Course control and tracking: orientation through image stabilization.
暂无分享,去创建一个
[1] Rudolf Arnheim,et al. Gesetze des Sehens , 1977 .
[2] G. J. Phillips,et al. The Analysis of Observations on Spaced Receivers of the Fading of Radio Signals , 1950 .
[3] H. Wagner. Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) I. Organization of the Flight Motor , 1986 .
[4] K. Kirschfeld,et al. Motion sensitivity in the nucleus of the basal optic root of the pigeon. , 1994, Journal of neurophysiology.
[5] D. H. Kelly. Motion and vision. II. Stabilized spatio-temporal threshold surface. , 1979, Journal of the Optical Society of America.
[6] F. A. Miles,et al. Visual Motion and Its Role in the Stabilization of Gaze , 1992 .
[7] M. Heisenberg,et al. Vision in Drosophila , 1984 .
[8] H. Wagner. Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) III. Interactions Between Angular Movement Induced by Wide- and Smallfield Stimuli , 1986 .
[9] A. Borst,et al. Motion computation and visual orientation in flies. , 1993, Comparative biochemistry and physiology. Comparative physiology.
[10] B. Hassenstein,et al. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .
[11] D. Bilo,et al. Optocollic Reflexes and Neck Flexion—Related Activity of Flight Control Muscles in the Airflow-Stimulated Pigeon , 1992 .
[12] Willem Bles,et al. Angular velocity, not temporal frequency determines circular vection , 1990, Vision Research.
[13] W. Reichardt,et al. Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. , 1989, Journal of the Optical Society of America. A, Optics and image science.
[14] W. Reichardt,et al. Übertragungseigenschaften im Auswertesystem für das Bewegungssehen , 1959 .
[15] Michael F. Land,et al. Visual tracking and pursuit: Humans and arthropods compared , 1992 .
[16] M. Egelhaaf. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .
[17] M Egelhaaf,et al. In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[18] M. Srinivasan,et al. Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.
[19] G. A. Kerkut,et al. Comprehensive insect physiology, biochemistry, and pharmacology , 1985 .
[20] Christian Wehrhahn,et al. Visual guidance of flies during flight , 1985 .
[21] Alain Berthoz,et al. The Head-neck sensory motor system , 1992 .
[22] R. Shapley,et al. Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.
[23] H. Nalbach,et al. Visual stabilization in arthropods. , 1993, Reviews of oculomotor research.
[24] Martin Egelhaaf,et al. Visual course control in flies relies on neuronal computation of object and background motion , 1988, Trends in Neurosciences.
[25] D. Varjú. Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster , 1959 .
[26] K Kirschfeld,et al. An optomotor control system with automatic compensation for contrast and texture , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[27] Erich Buchner,et al. Behavioural Analysis of Spatial Vision in Insects , 1984 .
[28] C. Wehrhahn,et al. Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[29] A. Borst,et al. Transient and steady-state response properties of movement detectors , 1989 .
[30] K. Hausen. The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .