Course control and tracking: orientation through image stabilization.

Course control and tracking are based on visual detection of the position and movement of objects. A disadvantage of biological movement detectors is that they cannot provide a signal proportional to the speed at which the image of an object moves over the retina. Other image parameters, such as brightness, contrast, and texture, strongly affect the magnitude of the detectors' output signals. To function well, the optomotor control circuit must solve these problems. One possible solution, realized in Diptera, is the principle of "gain control by feedback oscillations" described in this chapter. The optomotor system serves for course control by stabilizing the image of the visual panorama on the eye, and for tracking a moving object by stabilizing the object's image on the eye. When an object moves in front of a structured background, it is impossible for the images of both object and background to be stabilized simultaneously. Arthropods and vertebrates usually employ the same strategy to cope with this problem: saccadic tracking. In Diptera, the neural substrate for saccadic tracking is partially understood.

[1]  Rudolf Arnheim,et al.  Gesetze des Sehens , 1977 .

[2]  G. J. Phillips,et al.  The Analysis of Observations on Spaced Receivers of the Fading of Radio Signals , 1950 .

[3]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) I. Organization of the Flight Motor , 1986 .

[4]  K. Kirschfeld,et al.  Motion sensitivity in the nucleus of the basal optic root of the pigeon. , 1994, Journal of neurophysiology.

[5]  D. H. Kelly Motion and vision. II. Stabilized spatio-temporal threshold surface. , 1979, Journal of the Optical Society of America.

[6]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[7]  M. Heisenberg,et al.  Vision in Drosophila , 1984 .

[8]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) III. Interactions Between Angular Movement Induced by Wide- and Smallfield Stimuli , 1986 .

[9]  A. Borst,et al.  Motion computation and visual orientation in flies. , 1993, Comparative biochemistry and physiology. Comparative physiology.

[10]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[11]  D. Bilo,et al.  Optocollic Reflexes and Neck Flexion—Related Activity of Flight Control Muscles in the Airflow-Stimulated Pigeon , 1992 .

[12]  Willem Bles,et al.  Angular velocity, not temporal frequency determines circular vection , 1990, Vision Research.

[13]  W. Reichardt,et al.  Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[14]  W. Reichardt,et al.  Übertragungseigenschaften im Auswertesystem für das Bewegungssehen , 1959 .

[15]  Michael F. Land,et al.  Visual tracking and pursuit: Humans and arthropods compared , 1992 .

[16]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[17]  M Egelhaaf,et al.  In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[19]  G. A. Kerkut,et al.  Comprehensive insect physiology, biochemistry, and pharmacology , 1985 .

[20]  Christian Wehrhahn,et al.  Visual guidance of flies during flight , 1985 .

[21]  Alain Berthoz,et al.  The Head-neck sensory motor system , 1992 .

[22]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[23]  H. Nalbach,et al.  Visual stabilization in arthropods. , 1993, Reviews of oculomotor research.

[24]  Martin Egelhaaf,et al.  Visual course control in flies relies on neuronal computation of object and background motion , 1988, Trends in Neurosciences.

[25]  D. Varjú Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster , 1959 .

[26]  K Kirschfeld,et al.  An optomotor control system with automatic compensation for contrast and texture , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  Erich Buchner,et al.  Behavioural Analysis of Spatial Vision in Insects , 1984 .

[28]  C. Wehrhahn,et al.  Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  A. Borst,et al.  Transient and steady-state response properties of movement detectors , 1989 .

[30]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .