An efficient semantic - Related image retrieval method

Retrieving semantic images spread out in the entire feature space.Determining the semantic weight of each query in combined distance calculation.Identifying the importance for each feature.Our method is quite effective, improving the retrieval in one feedback iteration. Many previous techniques were designed to retrieve semantic images in a certain neighborhood of the query image and thus bypassing the semantically related images in the whole feature space. Several recently methods were designed to retrieve semantically related images in the entire feature space but with low precision. In this paper, we propose a Semantic Related Image Retrieval method (SRIR), which can retrieve semantic images spread in the entire feature space with high precision. Our method takes advantage of the user feedback to determine the semantic importance of each query and the importance of each feature. In addition, the retrieval time of our method does not increase with the number of user feedback. We also provide experimental results to demonstrate the effectiveness of our method.

[1]  Xiaojun Qi,et al.  Complementary relevance feedback-based content-based image retrieval , 2014, Multimedia Tools and Applications.

[2]  Kriengkrai Porkaew,et al.  Query refinement for multimedia similarity retrieval in MARS , 1999, MULTIMEDIA '99.

[3]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[4]  Yixin Chen,et al.  An unsupervised learning approach to content-based image retrieval , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[5]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[6]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[7]  Xiaojun Qi,et al.  Semantic clusters based manifold ranking for image retrieval , 2011, 2011 18th IEEE International Conference on Image Processing.

[8]  Ying Liu,et al.  Semantic Clustering for Region-Based Image Retrieval , 2007, Ninth IEEE International Symposium on Multimedia Workshops (ISMW 2007).

[9]  Xiaojun Qi,et al.  Capturing semantic relationship among images in clusters for efficient content-based image retrieval , 2012, 2012 19th IEEE International Conference on Image Processing.

[10]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Dan Ventura,et al.  Conveying Semantics through Visual Metaphor , 2014, TIST.

[12]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[13]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[14]  Amarnath Gupta,et al.  Visual information retrieval , 1997, CACM.

[15]  Rajeev Motwani,et al.  Incremental clustering and dynamic information retrieval , 1997, STOC '97.

[16]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[17]  Nicholas Ayache,et al.  Learning Semantic and Visual Similarity for Endomicroscopy Video Retrieval , 2012, IEEE Transactions on Medical Imaging.

[18]  Kien A. Hua,et al.  Query Decomposition: A Multiple Neighborhood Approach to Relevance Feedback Processing in Content-based Image Retrieval , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[19]  Kien A. Hua,et al.  Fast Query Point Movement Techniques for Large CBIR Systems , 2009, IEEE Transactions on Knowledge and Data Engineering.

[20]  Nguyen Huu Quynh,et al.  An Image Retrieval Method Using Homogeneous Region and Relevance Feedback , 2014 .

[21]  Francesco G. B. De Natale,et al.  A Stochastic Approach to Image Retrieval Using Relevance Feedback and Particle Swarm Optimization , 2010, IEEE Transactions on Multimedia.

[22]  Roberto Brunelli,et al.  Image Retrieval by Examples , 2000, IEEE Trans. Multim..

[23]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[24]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[25]  Beng Chin Ooi,et al.  Towards effective indexing for very large video sequence database , 2005, SIGMOD '05.

[26]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[27]  Mei-Ling Shyu,et al.  Negative Correlation Discovery for Big Multimedia Data Semantic Concept Mining and Retrieval , 2016, 2016 IEEE Tenth International Conference on Semantic Computing (ICSC).

[28]  Abbes Amira,et al.  Semantic content-based image retrieval: A comprehensive study , 2015, J. Vis. Commun. Image Represent..

[29]  Arnold W. M. Smeulders,et al.  Content-Based Image Retrieval , 2004 .

[30]  G. Medioni,et al.  Content-based image retrieval: an overview , 2004 .

[31]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Multimedia Systems.

[32]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Sharad Mehrotra,et al.  Relevance feedback techniques in the MARS image retrieval system , 2003, Multimedia Systems.

[34]  Kien A. Hua,et al.  Image Retrieval Based on Regions of Interest , 2003, IEEE Trans. Knowl. Data Eng..

[35]  Christos Faloutsos,et al.  FALCON: Feedback Adaptive Loop for Content-Based Retrieval , 2000, VLDB.

[36]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[37]  Michael Isard,et al.  Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[38]  Ilaria Bartolini,et al.  FeedbackBypass: A New Approach to Interactive Similarity Query Processing , 2001, VLDB.

[39]  James C. French,et al.  Improving Image Retrieval Effectiveness via Multiple Queries , 2003, MMDB '03.

[40]  James C. French,et al.  Using Multiple Image Representations to Improve the Quality of Content-Based Image Retrieval , 2012 .

[41]  Andrew Zisserman,et al.  Three things everyone should know to improve object retrieval , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.