Modelling and simulation of an alkaline electrolyser cell

An enhanced one-dimensional model has been developed for an alkaline electrolyser cell for hydrogen production, based on linked modular mathematical models in Simulink®. Where possible, the model parameters were derived on a physical basis and related to the materials of construction and the configuration of its components. This means that the model can be applied to many alkaline electrolyser cells, whereas existing semi-empirical models were generally developed for a specific cell. In addition to predicting the overall equilibrium electrolyser cell performance, the model is a powerful tool for understanding the contributions to cell voltage from the various internal components. It is thus useful as a guide to researchers aiming for improved performance through modified geometry and enhanced electrode materials. The model performed very well when compared to published models tested against the same sets of experimental data.

[1]  K. Kobe The properties of gases and liquids , 1959 .

[2]  Linfeng Zhang,et al.  The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack , 2014 .

[3]  Z. Abdin,et al.  PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters , 2016 .

[4]  Kodjo Agbossou,et al.  Simulation tool based on a physics model and an electrical analogy for an alkaline electrolyser , 2014 .

[5]  R. Datta,et al.  PEM fuel cell as a membrane reactor , 2001 .

[6]  Dennis Y.C. Leung,et al.  A modeling study on concentration overpotentials of a reversible solid oxide fuel cell , 2006 .

[7]  Phillip N. Hutton,et al.  A macro-level model for determining the performance characteristics of solid oxide fuel cells , 2004 .

[8]  Colin J. Webb,et al.  Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review , 2015 .

[9]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[10]  Toshiaki Murata,et al.  Output Power Smoothing and Hydrogen Production by Using Variable Speed Wind Generators , 2010, IEEE Transactions on Industrial Electronics.

[11]  Kodjo Agbossou,et al.  Electrolytic hydrogen based renewable energy system with oxygen recovery and re-utilization , 2004 .

[12]  Claus Krog Ekman,et al.  Prospects for large scale electricity storage in Denmark , 2010 .

[13]  Z. Abdin,et al.  Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell , 2015 .

[14]  Bernd Emonts,et al.  PHOEBUS—an autonomous supply system with renewable energy: six years of operational experience and advanced concepts , 1999 .

[15]  Hubert A. Gasteiger,et al.  Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media , 2015 .

[16]  J. C. Amphlett,et al.  TECHNICAL PAPERS ELECTROCHEMICAL SCIENCE AND TECHNOLOGY Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell I. Mechanistic Model Development , 1995 .

[17]  R. Leysen,et al.  The influence of manufacturing parameters on the properties of macroporous Zirfon® separators , 2008 .

[18]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[19]  Dennis Y.C. Leung,et al.  An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production , 2006 .

[20]  Saurabh Singh,et al.  Preparation of thin Co3O4 films on Ni and their electrocatalytic surface properties towards oxygen evolution , 1996 .

[21]  J. Dukovic,et al.  The Influence of Attached Bubbles on Potential Drop and Current Distribution at Gas‐Evolving Electrodes , 1987 .

[22]  M.H. Nehrir,et al.  Dynamic models and model validation for PEM fuel cells using electrical circuits , 2005, IEEE Transactions on Energy Conversion.

[23]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[24]  David Infield,et al.  Demonstration of the operation and performance of a pressurised alkaline electrolyser operating in the hydrogen fuelling station in Porsgrunn, Norway , 2015 .

[25]  Koichi Murakami,et al.  Bubble Effects on the Solution IR Drop in a Vertical Electrolyzer Under Free and Forced Convection , 1980 .

[26]  H. Wendt,et al.  Electrocatalytic and thermal activation of anodic oxygen- and cathodic hydrogen-evolution in alkaline water electrolysis , 1983 .

[27]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[28]  J. Balej Water vapour partial pressures and water activities in potassium and sodium hydroxide solutions over wide concentration and temperature ranges , 1985 .

[29]  P. Chartier,et al.  Co3O4 and Co- Based Spinel Oxides Bifunctional Oxygen Electrodes , 2010, International Journal of Electrochemical Science.

[30]  R. Balzer,et al.  The bubble coverage of gas-evolving electrodes in stagnant electrolytes , 2005 .

[31]  J. C. Amphlett,et al.  Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. II: Empirical model development , 1995 .

[32]  Ø. Ulleberg Modeling of advanced alkaline electrolyzers: a system simulation approach , 2003 .

[33]  A. Balabel,et al.  Hydrodynamics characteristics of hydrogen evolution process through electrolysis: Numerical and experimental studies , 2015 .

[34]  H. Barthels,et al.  Phoebus-Jülich: An autonomous energy supply system comprising photovoltaics, electrolytic hydrogen, fuel cell , 1998 .

[35]  Ø. Ulleberg,et al.  TRNSYS simulation models for solar-hydrogen systems , 1997 .

[36]  J. Singh,et al.  Electrocatalytic properties of new spinel-type MMoO4 (M = Fe, Co and Ni) electrodes for oxygen evolution in alkaline solutions , 2008 .

[37]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[38]  A. Eucken,et al.  Allgemeine Gesetzmäßigkeiten für das Wärmeleitvermögen verschiedener Stoffarten und Aggregatzustände , 1940 .

[39]  R. Kee,et al.  A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies , 2003 .

[40]  Pablo Sanchis,et al.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends , 2012, Proceedings of the IEEE.

[41]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[42]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[43]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[44]  Liang-Yin Chu,et al.  Preparation of Thermo-responsive Core-shell Microcapsules with a Porous Membrane and Poly (N-isopropylacrylamide) Gates , 2001 .

[45]  W. R. The Elements of Physical Chemistry , 1902, Nature.

[46]  Amit Kumar,et al.  A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands , 2016 .

[47]  H. Bruining,et al.  Two-Phase Flow , 2012, Upscaling of Single- and Two-Phase Flow in Reservoir Engineering.

[48]  Mamadou Lamine Doumbia,et al.  New multi-physics approach for modelling and design of alkaline electrolyzers , 2012 .

[49]  S. Poncsák,et al.  Mathematical model to evaluate the ohmic resistance caused by the presence of a large number of bubbles in Hall-Héroult cells , 2007 .

[50]  Karel Bouzek,et al.  Membrane electrolysis—History, current status and perspective , 2016 .

[51]  S. Trasatti Physical electrochemistry of ceramic oxides , 2010 .

[52]  Arash Khalilnejad,et al.  A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer , 2014 .

[53]  C. Bowen,et al.  The Thermodynamics of Aqueous Water Electrolysis , 1980 .

[54]  B. Grobéty,et al.  Electrochemical characterization of porous diaphragms in development for gas separation , 2012 .

[55]  Najib Laraqi,et al.  Management strategies for surplus electricity loads using electrolytic hydrogen , 2009 .

[56]  J. R. Hampton,et al.  Physical and electrochemical area determination of electrodeposited Ni, Co, and NiCo thin films , 2015, Nano Convergence.

[57]  Oxygen evolution on semiconducting oxides , 1977 .

[58]  W Hug,et al.  Intermittent operation and operation modeling of an alkaline electrolyzer , 1993 .

[59]  Charles W. Tobias,et al.  On the Conductivity of Dispersions , 1959 .

[60]  N. Djilali,et al.  Transient electrolyser response in a renewable-regenerative energy system , 2009 .

[61]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[62]  N. Koratkar,et al.  Water electrolysis activated by Ru nanorod array electrodes , 2006 .

[63]  John P. Barton,et al.  The production of hydrogen fuel from renewable sources and its role in grid operations , 2010 .