Bayesian Beamforming for DOA Uncertainty: Theory and Implementation

A Bayesian approach to adaptive narrowband beamforming for uncertain source direction-of-arrival (DOA) is presented. The DOA is modeled as a random variable with prior statistics that describe its level of uncertainty. The Bayesian beamformer is the corresponding minimum mean-square error (MMSE) estimator, which can be viewed as a mixture of directional beamformers combined according to the posterior distribution of the DOA given the data. Under a deterministic DOA, the mean-square error (MSE) of the Bayesian beamformer becomes as low as that of the directional beamformer equipped with the DOA candidate in the prior set that is the closest to the true DOA at exponential rate, where closeness is defined in the Kullback-Leibler sense. Two efficient algorithms using a uniform linear array (ULA) are presented. The first method utilizes the efficiency of the fast Fourier transform (FFT) to compute the posterior distribution on a large number of DOA candidates. The second method approximates the posterior distribution by a Gaussian distribution, which leads to a directional beamformer incorporated with a particular spreading matrix and an adjusted DOA. Numerical simulations show that the proposed beamformer outperforms other related blind or robust beamforming algorithms over a wide range of signal-to-noise ratios (SNRs)

[1]  Andrew C. Singer,et al.  Adaptive Bayesian Beamforming for Steering Vector Uncertainties with Order Recursive Implementation , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[2]  K. Senne,et al.  Adaptive array principles , 1983, IEEE Antennas and Propagation Society Newsletter.

[3]  Louis A. Liporace,et al.  Variance of Bayes estimates , 1971, IEEE Trans. Inf. Theory.

[4]  Zhi-Quan Luo,et al.  Robust adaptive beamforming for general-rank signal models , 2003, IEEE Trans. Signal Process..

[5]  W. Rudin Principles of mathematical analysis , 1964 .

[6]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[7]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[8]  L. Godara Error Analysis of the Optimal Antenna Array Processors , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[9]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[10]  J. Capon,et al.  Multidimensional maximum-likelihood processing of a large aperture seismic array , 1967 .

[11]  Bhaskar D. Rao,et al.  Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise , 1989, IEEE Trans. Acoust. Speech Signal Process..

[12]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[13]  Johann F. Böhme,et al.  Experimental performance of adaptive beamforming in a sonar environment with a towed array and moving interfering sources , 2000, IEEE Trans. Signal Process..

[14]  Meng Hwa Er,et al.  A new approach to robust beamforming in the presence of steering vector errors , 1994, IEEE Trans. Signal Process..

[15]  Gregori Vázquez,et al.  Robust beamforming for interference rejection in mobile communications , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[16]  Henry Cox,et al.  Effects of amplitude and phase errors on linear predictive array processors , 1988, IEEE Trans. Acoust. Speech Signal Process..

[17]  Ehud Weinstein,et al.  Signal enhancement using beamforming and nonstationarity with applications to speech , 2001, IEEE Trans. Signal Process..

[18]  A. Lee Swindlehurst,et al.  Analysis of the combined effects of finite samples and model errors on array processing performance , 1994, IEEE Trans. Signal Process..

[19]  Zhi-Quan Luo,et al.  Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem , 2003, IEEE Trans. Signal Process..

[20]  L. E. Brennan,et al.  Adaptive arrays in airborne MTI radar , 1976 .

[21]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, IEEE Trans. Signal Process..

[22]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[23]  Kristine L. Bell,et al.  A Bayesian approach to robust adaptive beamforming , 2000, IEEE Trans. Signal Process..

[24]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[25]  B.D. Steinberg,et al.  Digital beamforming in ultrasound , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  B. Carlson Covariance matrix estimation errors and diagonal loading in adaptive arrays , 1988 .

[27]  A. M. Walker On the Asymptotic Behaviour of Posterior Distributions , 1969 .

[28]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[29]  Stephen P. Boyd,et al.  Robust minimum variance beamforming , 2005, IEEE Transactions on Signal Processing.

[30]  Mati Wax,et al.  Performance analysis of the minimum variance beamformer , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[31]  C. L. Zahm Effects of errors in the direction of incidence on the performance of an adaptive array , 1972 .

[32]  L. Godara Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations , 1997, Proc. IEEE.

[33]  Olivier Besson,et al.  Signal waveform estimation in the presence of uncertainties about the steering vector , 2004, IEEE Transactions on Signal Processing.

[34]  Bhaskar D. Rao,et al.  Performance analysis of Root-Music , 1989, IEEE Trans. Acoust. Speech Signal Process..

[35]  Joseph R. Guerci,et al.  On Periodic Autoregressive Processes Estimation , 2000 .

[36]  Mati Wax,et al.  Performance analysis of the minimum variance beamformer in the presence of steering vector errors , 1996, IEEE Trans. Signal Process..

[37]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .