Molecular Simulation Study of the Performance of Supported Ionic Liquid Phase Materials for the Separation of Carbon Dioxide from Methane and Hydrogen

Molecular dynamics and Gibbs ensemble Monte Carlo simulations were used to compute the self-diffusion coefficients and solubilities of CO2, CH4, and H2 in model membranes consisting of slit pores with diameters of 2 and 5 nm. Solubility selectivities, diffusion selectivities, and permselectivities of CO2 for binary gas mixtures of CO2/CH4 and CO2/H2 were also computed. The calculations were repeated for the same pores filled with the ionic liquid (IL) 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim]+[Tf2N]−) and for bulk IL. The bulk IL system was used as a model for a supported ionic liquid membrane separator having large pores, while the confined IL systems were used to assess whether extreme nanoconfinement of ILs has an effect on permselectivity. Permselectivities were about a factor of 10 higher in all the IL systems compared to the empty nanopores. Nanoconfinement tends to increase the solubility and decrease the diffusivity of all gases relative to the bulk IL. The bulk IL h...

[1]  P. Milani,et al.  Evidence of extended solidlike layering in [Bmim][NTf2] ionic liquid thin films at room-temperature. , 2009, The journal of physical chemistry. B.

[2]  R. Cracknell Molecular simulation of hydrogen adsorption in graphitic nanofibres , 2001 .

[3]  Jason E. Bara,et al.  Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes , 2009 .

[4]  M. Adibi,et al.  Separation of CO2/CH4 through alumina-supported geminal ionic liquid membranes , 2014 .

[5]  E. Maginn,et al.  Combined application of high-field diffusion NMR and molecular dynamics simulations to study dynamics in a mixture of carbon dioxide and an imidazolium-based ionic liquid. , 2012, The journal of physical chemistry. B.

[6]  Alexander P. Lyubartsev,et al.  Structural Evidence for the Ordered Crystallites of Ionic Liquid in Confined Carbon Nanotubes , 2009 .

[7]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[8]  W. Shi,et al.  Enhanced gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in silica slit pores: a molecular simulation study. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[9]  H. Pettersson,et al.  On the Influence of Anions in Binary Ionic Liquid Electrolytes for Monolithic Dye-Sensitized Solar Cells , 2007 .

[10]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[11]  Luísa A. Neves,et al.  Gas permeation studies in supported ionic liquid membranes , 2010 .

[12]  K. Gubbins,et al.  Selective adsorption of simple mixtures in slit pores: a model of methane-ethane mixtures in carbon , 1992 .

[13]  Hideto Matsuyama,et al.  CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane , 2008 .

[14]  J. Monk,et al.  Heterogeneity in the Dynamics of the Ionic Liquid [BMIM+][PF6–] Confined in a Slit Nanopore , 2011 .

[15]  Andrew S. Paluch,et al.  Cassandra: An open source Monte Carlo package for molecular simulation , 2017, J. Comput. Chem..

[16]  E. Maginn,et al.  A Monte Carlo Simulation Study To Predict the Solubility of Carbon Dioxide, Hydrogen, and Their Mixture in the Ionic Liquids 1-Alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim+][Tf2N–], n = 4, 6) , 2015 .

[17]  Shimou Chen,et al.  Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. , 2007, Journal of the American Chemical Society.

[18]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[19]  Surya Moganty,et al.  CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: Effect of the support on separation performance , 2012 .

[20]  M. D. Del Pópolo,et al.  Structure and dynamics of a confined ionic liquid. Topics of relevance to dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[21]  Paul Scovazzo,et al.  Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes , 2004 .

[22]  Hideto Matsuyama,et al.  Amino acid ionic liquid-based facilitated transport membranes for CO2 separation. , 2012, Chemical communications.

[23]  Paul Scovazzo,et al.  Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research , 2009 .

[24]  J. Johnson,et al.  MOLECULAR SIMULATION OF HYDROGEN ADSORPTION IN SINGLE-WALLED CARBON NANOTUBES AND IDEALIZED CARBON SLIT PORES , 1999 .

[25]  A. Chandra,et al.  Molecular relaxation in simple dipolar liquids confined between two solid surfaces , 1998 .

[26]  Juan Zhang,et al.  Nanocomposites of ionic liquids confined in mesoporous silica gels: preparation, characterization and performance. , 2010, Physical chemistry chemical physics : PCCP.

[27]  A. Riisagera,et al.  Supported ionic liquids: versatile reaction and separation media , 2006 .

[28]  Richard W. Baker,et al.  Natural Gas Processing with Membranes: An Overview , 2008 .

[29]  Marco Litschauer,et al.  Entrapment of an Ionic Liquid in a Metallic Silver Matrix through Precipitation , 2008 .

[30]  K. Han,et al.  Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[31]  Wenchuan Wang,et al.  Adsorption and Diffusion of Supercritical Carbon Dioxide in Slit Pores , 2000 .

[32]  M. Hashim,et al.  Ionic liquids in supported liquid membrane technology , 2011 .

[33]  Haiping Fang,et al.  Drastic Phase Transition in Ionic Liquid [Dmim][Cl] Confined Between Graphite Walls : New Phase Formation , 2009 .

[34]  R. Baker Future directions of membrane gas separation technology , 2002 .

[35]  P. Alexandridis,et al.  Ionic liquid-modified porous materials for gas separation and heterogeneous catalysis , 2012 .

[36]  P. Scovazzo,et al.  Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes , 2009 .

[37]  Joan F. Brennecke,et al.  High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes ! , 2008 .

[38]  S. Kazarian,et al.  Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs). , 2014, The journal of physical chemistry. B.

[39]  M. Thommes,et al.  Influence of confinement in mesoporous silica on diffusion of a mixture of carbon dioxide and an imidazolium-based ionic liquid by high field diffusion NMR , 2015 .

[40]  M. Ribeiro,et al.  Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. , 2005, The Journal of chemical physics.

[41]  J. Monk,et al.  On the Influence of Pore Size and Pore Loading on Structural and Dynamical Heterogeneities of an Ionic Liquid Confined in a Slit Nanopore , 2012 .

[42]  David R. Luebke,et al.  Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125 °C , 2007 .

[43]  T. Welton Ionic liquids in catalysis , 2004 .

[44]  Alexis T. Bell,et al.  Molecular dynamics study of methane and xenon in silicalite , 1990 .

[45]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[46]  Y. Lim,et al.  Prediction of carbon dioxide permeability in carbon slit pores , 2010 .

[47]  D. Armstrong,et al.  Ionic liquids in separations. , 2007, Accounts of chemical research.

[48]  W. Shi,et al.  Molecular simulations of CO2 and H2 sorption into ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in carbon nanotubes. , 2010, The journal of physical chemistry. B.

[49]  E. Maginn,et al.  Molecular Simulation Study of the Solubility, Diffusivity and Permselectivity of Pure and Binary Mixtures of CO2 and CH4 in the Ionic Liquid 1-n-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide , 2015 .

[50]  E. Maginn,et al.  A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules. , 2011, The Journal of chemical physics.

[51]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[52]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[53]  R. Noble,et al.  Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents , 2008 .

[54]  E. Maginn,et al.  A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. , 2011, The Journal of chemical physics.

[55]  H. Ding,et al.  Absorption of CO2 with supported imidazolium-based ionic liquid membranes , 2015 .

[56]  W. Shi,et al.  Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]. , 2008, The journal of physical chemistry. B.

[57]  Mert Atilhan,et al.  Computational Study of Hexamethylguanidinium Lactate Ionic Liquid: A Candidate for Natural Gas Sweetening , 2010 .

[58]  Hideki Tanaka,et al.  Grand canonical monte carlo simulation study of methane adsorption at an open graphite surface and in slit-like carbon pores at 273 K. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[59]  Wei Zhao,et al.  Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation , 2012 .

[60]  F. Kremer,et al.  Enhanced charge transport in nano-confined ionic liquids , 2012 .

[61]  P. Wasserscheid,et al.  Supported ionic liquid phase (SILP) materials for removal of hazardous gas compounds – efficient and irreversible NH3 adsorption , 2014 .