The effects of laterally varying icy shell structure on the tidal response of Ganymede and Europa
暂无分享,去创建一个
Shijie Zhong | John Wahr | J. Wahr | S. Zhong | G. A. | Shijie Zhong
[1] M. E. Brown,et al. SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA , 2013, 1303.0894.
[2] J. Wahr,et al. Tidal Response of a Laterally Varying Moon: An Application of Perturbation Theory , 2013 .
[3] J. Wahr,et al. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .
[4] J. Wahr,et al. Can tidal tomography be used to unravel the long‐wavelength structure of the lunar interior? , 2012 .
[5] B. Vermeersen,et al. Effects of low-viscous layers and a non-zero obliquity on surface stresses induced by diurnal tides and non-synchronous rotation: The case of Europa , 2011 .
[6] R. Pappalardo,et al. Modeling stresses on satellites due to nonsynchronous rotation and orbital eccentricity using gravitational potential theory , 2009 .
[7] Louis Moresi,et al. A benchmark study on mantle convection in a 3‐D spherical shell using CitcomS , 2008 .
[8] K. Zahnle,et al. Transfer of mass from Io to Europa and beyond due to cometary impacts , 2008 .
[9] Kevin Zahnle,et al. Secondary and sesquinary craters on Europa , 2008 .
[10] P. Thomas,et al. The global shape of Europa: Constraints on lateral shell thickness variations , 2007 .
[11] David E. Smith,et al. Tides on Europa, and the thickness of Europa's icy shell , 2006 .
[12] Archie Paulson,et al. Modelling post-glacial rebound with lateral viscosity variations , 2005 .
[13] A. Paulson,et al. Three-dimensional finite-element modelling of Earth's viscoelastic deformation: effects of lateral variations in lithospheric thickness , 2003 .
[14] David P. O'Brien,et al. A melt-through model for chaos formation on Europa , 2002 .
[15] David E. Smith,et al. Crossover analysis of Mars Orbiter Laser Altimeter data , 2001 .
[16] David E. Smith,et al. Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .
[17] Yoaz Bar-Sever,et al. Probing Europa's hidden ocean from tidal effects on orbital dynamics , 2001 .
[18] G. Schubert,et al. The Tidal Response of Europa , 2000 .
[19] Kevin Zahnle,et al. Cratering Rates in the Outer Solar System , 1999 .
[20] K. Zahnle,et al. Cratering rates on the Galilean satellites. , 1998, Icarus.
[21] R. Greeley,et al. Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.
[22] J. Anderson,et al. The magnetic field and internal structure of Ganymede , 1996, Nature.
[23] J. D. Anderson,et al. Gravitational constraints on the internal structure of Ganymede , 1996, Nature.
[24] E. Whalley,et al. Acoustic velocities and densities of polycrystalline ice Ih, II, III, V, and VI by Brillouin spectroscopy , 1990 .
[25] D. Stevenson,et al. Thermal state of an ice shell on Europa , 1989 .
[26] E. Whalley,et al. Pressure dependence of the elastic constants of ice Ih to 2.8 kbar by Brillouin spectroscopy , 1988 .
[27] W. M. Kaula. Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .
[28] A. R. Edmonds,et al. Angular Momentum in Quantum Mechanics , 1957 .
[29] R. C. Johnson,et al. Angular Momentum in Quantum Mechanics , 2015 .
[30] J. B. Dalton,et al. Europa’s Surface Composition , 2009 .
[31] M. Manga,et al. Geodynamics of Europa's Icy Shell , 2009 .
[32] A. Showman,et al. Heat Transfer in Europa's Icy Shell , 2009 .
[33] R. Greenberg. Tides on Europa , 2006 .
[34] P. H. Gammon,et al. Elastic Constants of Artificial and Natural Ice Samples by Brillouin Spectroscopy , 1983, Journal of Glaciology.
[35] Paul Melchior,et al. Earth Tides , 1952, Nature.