Homogenization principles and effect of mixing on dielectric behavior

Abstract This paper consists of two parts. First, a review of classical mixing principles lists the multitude of the various ways to characterize the effective permittivity of heterogeneous materials. Different connections between the various mixing formulas are underlined and the homogenization principles are classified into families of mixing rules. The second part emphasizes and analyzes the richness of the manner how the mixing process is able to create new types of dielectric behaviors, in particular with respect to enhancement of dielectric polarization, shifts of the dispersion parameters, and emergence of new effects in electrical response.

[1]  A. Sihvola Model Systems for Materials with High Dielectric Losses in Aquametry , 2005 .

[2]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[3]  Christian Brosseau,et al.  Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective , 2006 .

[4]  M. Pitkonen A Closed-Form Solution for the Polarizability of a Dielectric Double Half-Cylinder , 2010 .

[5]  R. McPhedran,et al.  Addition formulas and the Rayleigh identity for arrays of elliptical cylinders. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Joseph B. Keller,et al.  Conductivity of a Medium Containing a Dense Array of Perfectly Conducting Spheres or Cylinders or Nonconducting Cylinders , 1963 .

[7]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[8]  C. G. Gardner,et al.  High dielectric constant microwave probes for sensing soil moisture , 1974 .

[9]  Ari Henrik Sihvola,et al.  How strict are theoretical bounds for dielectric properties of mixtures? , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Rolf Landauer,et al.  Electrical conductivity in inhomogeneous media , 2008 .

[11]  A. Sihvola,et al.  Composite near-field superlens design using mixing formulas and simulations , 2009 .

[12]  John E. Sipe,et al.  V Foundations of the Macroscopic Electromagnetic Theory of Dielectric Media , 1977 .

[13]  P. Leath,et al.  The theory and properties of randomly disordered crystals and related physical systems , 1974 .

[14]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[15]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[16]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[17]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[18]  Ari Henrik Sihvola,et al.  Analysis of a three-dimensional dielectric mixture with finite difference method , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  D. McLachlan,et al.  Equations for the conductivity of macroscopic mixtures , 1986 .

[20]  Karl Willy Wagner,et al.  Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen , 1914 .

[21]  A. Sihvola,et al.  Losses from lossless building blocks , 2012 .

[22]  M. D. Coutts,et al.  Optical Properties of Granular Silver and Gold Films , 1973 .

[23]  Large absorption efficiency in ultralow loss, composite plasmonic nanoparticles , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[24]  A. Shivola Self-consistency aspects of dielectric mixing theories , 1989 .

[25]  P. N. Sen,et al.  A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads , 1981 .

[26]  A. Sihvola,et al.  Mixing Formulas and Plasmonic Composites , 2009 .

[27]  H. Looyenga Dielectric constants of heterogeneous mixtures , 1965 .

[28]  G. Milton The Theory of Composites , 2002 .

[29]  Ari Sihvola,et al.  Metamaterials in electromagnetics , 2007 .

[30]  Carsten Rockstuhl,et al.  Homogenization of resonant chiral metamaterials , 2010, 1008.4295.

[31]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[32]  A. Sihvola Six-dimensional view of dielectric mixtures as metamaterials , 2009 .