Linear block and convolutional MDS codes to required rate, distance and type

Algebraic methods for the design of series of maximum distance separable (MDS) linear block and convolutional codes to required specifications and types are presented. Algorithms are given to design codes to required rate and required error-correcting capability and required types. Infinite series of block codes with rate approaching a given rationalR with 0 < R < 1 and relative distance over length approaching (1−R) are designed. These can be designed over fields of given characteristic p or over fields of prime order and can be specified to be of a particular type such as (i) dual-containing under Euclidean inner product, (ii) dual-containing under Hermitian inner product, (iii) quantum error-correcting, (iv) linear complementary dual (LCD). Convolutional codes to required rate and distance are designed and infinite series of convolutional codes with rate approaching a given rational R and distance over length approaching 2(1−R). Properties, including distances, are shown algebraically and algebraic explicit efficient decoding methods are known.

[1]  R. Blahut Algebraic Codes for Data Transmission , 2002 .

[2]  Jon-Lark Kim,et al.  Euclidean and Hermitian self-dual MDS codes over large finite fields , 2004, J. Comb. Theory, Ser. A.

[3]  T. Hurley,et al.  Group rings and rings of matrices , 2006 .

[4]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[5]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[6]  Joachim Rosenthal,et al.  Constructions of MDS-convolutional codes , 2001, IEEE Trans. Inf. Theory.

[7]  Heide Gluesing-Luerssen,et al.  A MacWilliams Identity for Convolutional Codes: The General Case , 2009, IEEE Transactions on Information Theory.

[8]  Joachim Rosenthal,et al.  Connections between linear systems and convolutional codes , 2000, math/0005281.

[9]  Donny Hurley,et al.  Quantum error-correcting codes: the unit-derived strategy , 2018, ArXiv.

[10]  Sihem Mesnager,et al.  Complementary Dual Algebraic Geometry Codes , 2016, IEEE Transactions on Information Theory.

[11]  José Ignacio Iglesias Curto,et al.  Convolutional Goppa codes , 2003, IEEE Transactions on Information Theory.

[12]  Ted Hurley,et al.  Convolutional codes from units in matrix and group rings , 2007, ArXiv.

[13]  Paul Hurley,et al.  Codes from zero-divisors and units in group rings , 2009, Int. J. Inf. Coding Theory.

[14]  Maosheng Xiong,et al.  Construction of Unit-Memory MDS Convolutional Codes , 2015, ArXiv.

[15]  Xi Dong,et al.  Bulk locality and quantum error correction in AdS/CFT , 2014, 1411.7041.

[16]  Donny Hurley,et al.  Maximum distance separable codes to order , 2019, ArXiv.

[17]  Ted Hurley,et al.  Algebraic constructions of LDPC codes with no short cycles , 2008, Int. J. Inf. Coding Theory.

[18]  Ted Hurley,et al.  Systems of MDS codes from units and idempotents , 2014, Discret. Math..

[19]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[20]  Diego Napp Avelli,et al.  Constructing strongly-MDS convolutional codes with maximum distance profile , 2016, Adv. Math. Commun..

[21]  Paul Hurley,et al.  Module Codes in Group Rings , 2007, 2007 IEEE International Symposium on Information Theory.

[22]  Ted Hurley Convolutional codes from unit schemes , 2014, ArXiv.

[23]  Martin Rötteler,et al.  Quantum block and convolutional codes from self-orthogonal product codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[24]  James L. Massey Reversible Codes , 1964, Inf. Control..

[25]  James L. Massey,et al.  Linear codes with complementary duals , 1992, Discret. Math..

[26]  Sihem Mesnager,et al.  New Characterization and Parametrization of LCD Codes , 2019, IEEE Transactions on Information Theory.

[27]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional BCH Codes , 2007, 2007 10th Canadian Workshop on Information Theory (CWIT).

[28]  Florian Hug,et al.  Dual convolutional codes and the MacWilliams identities , 2012, Probl. Inf. Transm..

[29]  Donny Hurley,et al.  Coding Theory: the unit-derived methodology , 2018, Int. J. Inf. Coding Theory.

[30]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[31]  Ted Hurley,et al.  LDPC AND CONVOLUTIONAL CODES FROM MATRIX AND GROUP RINGS , 2010 .

[32]  Jon-Lark Kim,et al.  The combinatorics of LCD codes: linear programming bound and orthogonal matrices , 2015, Int. J. Inf. Coding Theory.

[33]  Claude Carlet,et al.  Complementary dual codes for counter-measures to side-channel attacks , 2016, Adv. Math. Commun..

[34]  Heide Gluesing-Luerssen,et al.  On Cyclic Convolutional Codes , 2002 .

[35]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[36]  Ted Hurley Linear complementary dual, maximum distance separable codes , 2019, ArXiv.

[37]  Diego Napp Avelli,et al.  A new class of superregular matrices and MDP convolutional codes , 2013, ArXiv.

[38]  Giuliano G. La Guardia,et al.  On Negacyclic MDS-Convolutional Codes , 2013, ArXiv.

[39]  P. Hurley,et al.  BLOCK CODES FROM MATRIX AND GROUP RINGS , 2010 .

[40]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[41]  Ted Hurley,et al.  Self-dual, dual-containing and related quantum codes from group rings , 2007, ArXiv.

[42]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[43]  Diego Napp Avelli,et al.  Superregular matrices and applications to convolutional codes , 2016, ArXiv.

[44]  Joachim Rosenthal,et al.  An Algebraic Decoding Algorithm for Convolutional Codes , 1999 .

[45]  Sihem Mesnager,et al.  Euclidean and Hermitian LCD MDS codes , 2017, Des. Codes Cryptogr..

[46]  Sihem Mesnager,et al.  Linear Codes Over 𝔽q Are Equivalent to LCD Codes for q>3 , 2018, IEEE Trans. Inf. Theory.

[47]  P. Frenkel Simple proof of Chebotarev's theorem on roots of unity , 2003, math/0312398.

[48]  Heide Gluesing-Luerssen,et al.  Algebraic decoding for doubly cyclic convolutional codes , 2010, Adv. Math. Commun..

[49]  Claude Carlet,et al.  Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.