MPDATA: Third-order accuracy for variable flows

Abstract This paper extends the multidimensional positive definite advection transport algorithm (MPDATA) to third-order accuracy for temporally and spatially varying flows. This is accomplished by identifying the leading truncation error of the standard second-order MPDATA, performing the Cauchy–Kowalevski procedure to express it in a spatial form and compensating its discrete representation—much in the same way as the standard MPDATA corrects the first-order accurate upwind scheme. The procedure of deriving the spatial form of the truncation error was automated using a computer algebra system. This enables various options in MPDATA to be included straightforwardly in the third-order scheme, thereby minimising the implementation effort in existing code bases. Following the spirit of MPDATA, the error is compensated using the upwind scheme resulting in a sign-preserving algorithm, and the entire scheme can be formulated using only two upwind passes. Established MPDATA enhancements, such as formulation in generalised curvilinear coordinates, the nonoscillatory option or the infinite-gauge variant, carry over to the fully third-order accurate scheme. A manufactured 3D analytic solution is used to verify the theoretical development and its numerical implementation, whereas global tracer-transport benchmarks demonstrate benefits for chemistry-transport models fundamental to air quality monitoring, forecasting and control. A series of explicitly-inviscid implicit large-eddy simulations of a convective boundary layer and explicitly-viscid simulations of a double shear layer illustrate advantages of the fully third-order-accurate MPDATA for fluid dynamics applications.

[1]  J. Verwer,et al.  A positive finite-difference advection scheme , 1995 .

[2]  L. Margolin,et al.  Large-eddy simulations of convective boundary layers using nonoscillatory differencing , 1999 .

[3]  L. Margolin,et al.  A rationale for implicit turbulence modelling , 2001 .

[4]  L. Margolin,et al.  On balanced approximations for time integration of multiple time scale systems , 2003 .

[5]  Christiane Jablonowski,et al.  MCore: A non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods , 2012, J. Comput. Phys..

[6]  Paul Charbonneau,et al.  EULAG, a computational model for multiscale flows: An MHD extension , 2013, J. Comput. Phys..

[7]  Christian Kühnlein,et al.  An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics , 2017, J. Comput. Phys..

[8]  Mats Hamrud,et al.  A finite-volume module for simulating global all-scale atmospheric flows , 2016, J. Comput. Phys..

[9]  L. Margolin,et al.  MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .

[10]  Len G. Margolin,et al.  Dissipation in Implicit Turbulence Models: A Computational Study , 2003 .

[11]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[12]  Ulrich Schumann,et al.  Coherent structure of the convective boundary layer derived from large-eddy simulations , 1989, Journal of Fluid Mechanics.

[13]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[14]  M. Minion,et al.  Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .

[15]  Piotr K. Smolarkiewicz,et al.  A spreading drop of shallow water , 2015, J. Comput. Phys..

[16]  Joanna Szmelter,et al.  An edge-based unstructured mesh discretisation in geospherical framework , 2010, J. Comput. Phys..

[17]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[18]  Piotr K. Smolarkiewicz,et al.  On spurious vortical structures , 2001 .

[19]  Emil M. Constantinescu,et al.  Predicting air quality: Improvements through advanced methods to integrate models and measurements , 2008, J. Comput. Phys..

[20]  Christian Kühnlein,et al.  Modelling atmospheric flows with adaptive moving meshes , 2012, J. Comput. Phys..

[21]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[22]  P. Smolarkiewicz,et al.  Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures , 2015 .

[23]  Mark A. Taylor,et al.  A STANDARD TEST CASE SUITE FOR TWO-DIMENSIONAL LINEAR TRANSPORT ON THE SPHERE: RESULTS FROM A COLLECTION OF STATE-OF-THE-ART SCHEMES , 2013 .

[24]  P. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .

[25]  Jesper Heile Christensen,et al.  Development of a High-Resolution Nested Air Pollution Model: The Numerical Approach , 2002 .

[26]  Len G. Margolin,et al.  Antidiffusive Velocities for Multipass Donor Cell Advection , 1998, SIAM J. Sci. Comput..

[27]  Mauricio Santillana,et al.  Estimating numerical errors due to operator splitting in global atmospheric chemistry models: Transport and chemistry , 2016, J. Comput. Phys..

[28]  P. Smolarkiewicz A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .

[29]  L. Margolin,et al.  Implicit turbulence modeling for high Reynolds number flows , 2002 .

[30]  P. H. Lauritzena,et al.  Evaluating advection / transport schemes using interrelated tracers , scatter plots and numerical mixing diagnostics , 2011 .

[31]  P. Lauritzen,et al.  Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics , 2012 .

[32]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[33]  Piotr K. Smolarkiewicz,et al.  libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations , 2015 .

[34]  Jack J. Dongarra,et al.  High-performance high-resolution semi-Lagrangian tracer transport on a sphere , 2011, J. Comput. Phys..

[35]  Francis X. Giraldo,et al.  Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode , 2012, J. Comput. Phys..

[36]  William J. Rider,et al.  Modeling turbulent flow with implicit LES , 2006 .

[37]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[38]  P. Smolarkiewicz,et al.  Effective eddy viscosities in implicit large eddy simulations of turbulent flows , 2003 .

[39]  J. Szmelter,et al.  MPDATA: An edge-based unstructured-grid formulation , 2005 .

[40]  Len G. Margolin,et al.  On ‘spurious’ eddies , 2001 .

[41]  C. Jablonowski,et al.  Moving Vortices on the Sphere: A Test Case for Horizontal Advection Problems , 2008 .

[42]  Janusz A. Pudykiewicz,et al.  APPLICATION OF ADJOINT TRACER TRANSPORT EQUATIONS FOR EVALUATING SOURCE PARAMETERS , 1998 .

[43]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[44]  Paul A. Ullrich,et al.  Understanding the treatment of waves in atmospheric models. Part 1: The shortest resolved waves of the 1D linearized shallow‐water equations , 2014 .

[45]  Paul Charbonneau,et al.  ON THE MODE OF DYNAMO ACTION IN A GLOBAL LARGE-EDDY SIMULATION OF SOLAR CONVECTION , 2011 .

[46]  Paul Charbonneau,et al.  MAGNETIC CYCLES IN GLOBAL LARGE-EDDY SIMULATIONS OF SOLAR CONVECTION , 2010 .

[47]  P. Lax,et al.  Systems of conservation laws , 1960 .

[48]  Joanna Szmelter,et al.  An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution , 2013, J. Comput. Phys..

[49]  Christian Kühnlein,et al.  A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..

[50]  P. K. Smolarkiewicz,et al.  Modeling turbulent stellar convection zones: Sub-grid scales effects , 2016, 1605.08685.

[51]  Christian Kühnlein,et al.  A finite-volume module for cloud-resolving simulations of global atmospheric flows , 2017, J. Comput. Phys..

[52]  Piotr K. Smolarkiewicz,et al.  On numerical realizability of thermal convection , 2009, J. Comput. Phys..

[53]  P. Smolarkiewicz,et al.  Solitary wave effects north of Strait of Messina , 2007 .

[54]  E. Patton,et al.  The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation , 2011 .

[55]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[56]  Piotr K. Smolarkiewicz,et al.  Multidimensional positive definite advection transport algorithm: an overview , 2006 .

[57]  W. Grabowski,et al.  The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .

[58]  Janusz A. Pudykiewicz,et al.  Simulation of the Chernobyl dispersion with a 3-D hemispheric tracer model , 1989 .

[59]  Patrick Knupp,et al.  Code Verification by the Method of Manufactured Solutions , 2000 .

[60]  Paul Charbonneau,et al.  Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection , 2017 .

[61]  Mark A. Taylor,et al.  A standard test case suite for two-dimensional linear transport on the sphere , 2012 .