MPDATA: Third-order accuracy for variable flows
暂无分享,去创建一个
Christian Kühnlein | Piotr K. Smolarkiewicz | Hanna Pawlowska | Maciej Waruszewski | P. Smolarkiewicz | C. Kühnlein | H. Pawłowska | M. Waruszewski
[1] J. Verwer,et al. A positive finite-difference advection scheme , 1995 .
[2] L. Margolin,et al. Large-eddy simulations of convective boundary layers using nonoscillatory differencing , 1999 .
[3] L. Margolin,et al. A rationale for implicit turbulence modelling , 2001 .
[4] L. Margolin,et al. On balanced approximations for time integration of multiple time scale systems , 2003 .
[5] Christiane Jablonowski,et al. MCore: A non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods , 2012, J. Comput. Phys..
[6] Paul Charbonneau,et al. EULAG, a computational model for multiscale flows: An MHD extension , 2013, J. Comput. Phys..
[7] Christian Kühnlein,et al. An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics , 2017, J. Comput. Phys..
[8] Mats Hamrud,et al. A finite-volume module for simulating global all-scale atmospheric flows , 2016, J. Comput. Phys..
[9] L. Margolin,et al. MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .
[10] Len G. Margolin,et al. Dissipation in Implicit Turbulence Models: A Computational Study , 2003 .
[11] Todd D. Ringler,et al. A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .
[12] Ulrich Schumann,et al. Coherent structure of the convective boundary layer derived from large-eddy simulations , 1989, Journal of Fluid Mechanics.
[13] H. Kreiss,et al. Comparison of accurate methods for the integration of hyperbolic equations , 1972 .
[14] M. Minion,et al. Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .
[15] Piotr K. Smolarkiewicz,et al. A spreading drop of shallow water , 2015, J. Comput. Phys..
[16] Joanna Szmelter,et al. An edge-based unstructured mesh discretisation in geospherical framework , 2010, J. Comput. Phys..
[17] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[18] Piotr K. Smolarkiewicz,et al. On spurious vortical structures , 2001 .
[19] Emil M. Constantinescu,et al. Predicting air quality: Improvements through advanced methods to integrate models and measurements , 2008, J. Comput. Phys..
[20] Christian Kühnlein,et al. Modelling atmospheric flows with adaptive moving meshes , 2012, J. Comput. Phys..
[21] Tsuyoshi Murata,et al. {m , 1934, ACML.
[22] P. Smolarkiewicz,et al. Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures , 2015 .
[23] Mark A. Taylor,et al. A STANDARD TEST CASE SUITE FOR TWO-DIMENSIONAL LINEAR TRANSPORT ON THE SPHERE: RESULTS FROM A COLLECTION OF STATE-OF-THE-ART SCHEMES , 2013 .
[24] P. Smolarkiewicz,et al. On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .
[25] Jesper Heile Christensen,et al. Development of a High-Resolution Nested Air Pollution Model: The Numerical Approach , 2002 .
[26] Len G. Margolin,et al. Antidiffusive Velocities for Multipass Donor Cell Advection , 1998, SIAM J. Sci. Comput..
[27] Mauricio Santillana,et al. Estimating numerical errors due to operator splitting in global atmospheric chemistry models: Transport and chemistry , 2016, J. Comput. Phys..
[28] P. Smolarkiewicz. A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .
[29] L. Margolin,et al. Implicit turbulence modeling for high Reynolds number flows , 2002 .
[30] P. H. Lauritzena,et al. Evaluating advection / transport schemes using interrelated tracers , scatter plots and numerical mixing diagnostics , 2011 .
[31] P. Lauritzen,et al. Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics , 2012 .
[32] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[33] Piotr K. Smolarkiewicz,et al. libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations , 2015 .
[34] Jack J. Dongarra,et al. High-performance high-resolution semi-Lagrangian tracer transport on a sphere , 2011, J. Comput. Phys..
[35] Francis X. Giraldo,et al. Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode , 2012, J. Comput. Phys..
[36] William J. Rider,et al. Modeling turbulent flow with implicit LES , 2006 .
[37] J. Prusa,et al. EULAG, a computational model for multiscale flows , 2008 .
[38] P. Smolarkiewicz,et al. Effective eddy viscosities in implicit large eddy simulations of turbulent flows , 2003 .
[39] J. Szmelter,et al. MPDATA: An edge-based unstructured-grid formulation , 2005 .
[40] Len G. Margolin,et al. On ‘spurious’ eddies , 2001 .
[41] C. Jablonowski,et al. Moving Vortices on the Sphere: A Test Case for Horizontal Advection Problems , 2008 .
[42] Janusz A. Pudykiewicz,et al. APPLICATION OF ADJOINT TRACER TRANSPORT EQUATIONS FOR EVALUATING SOURCE PARAMETERS , 1998 .
[43] Rémi Abgrall,et al. High‐order CFD methods: current status and perspective , 2013 .
[44] Paul A. Ullrich,et al. Understanding the treatment of waves in atmospheric models. Part 1: The shortest resolved waves of the 1D linearized shallow‐water equations , 2014 .
[45] Paul Charbonneau,et al. ON THE MODE OF DYNAMO ACTION IN A GLOBAL LARGE-EDDY SIMULATION OF SOLAR CONVECTION , 2011 .
[46] Paul Charbonneau,et al. MAGNETIC CYCLES IN GLOBAL LARGE-EDDY SIMULATIONS OF SOLAR CONVECTION , 2010 .
[47] P. Lax,et al. Systems of conservation laws , 1960 .
[48] Joanna Szmelter,et al. An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution , 2013, J. Comput. Phys..
[49] Christian Kühnlein,et al. A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..
[50] P. K. Smolarkiewicz,et al. Modeling turbulent stellar convection zones: Sub-grid scales effects , 2016, 1605.08685.
[51] Christian Kühnlein,et al. A finite-volume module for cloud-resolving simulations of global atmospheric flows , 2017, J. Comput. Phys..
[52] Piotr K. Smolarkiewicz,et al. On numerical realizability of thermal convection , 2009, J. Comput. Phys..
[53] P. Smolarkiewicz,et al. Solitary wave effects north of Strait of Messina , 2007 .
[54] E. Patton,et al. The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation , 2011 .
[55] R. F. Warming,et al. The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .
[56] Piotr K. Smolarkiewicz,et al. Multidimensional positive definite advection transport algorithm: an overview , 2006 .
[57] W. Grabowski,et al. The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .
[58] Janusz A. Pudykiewicz,et al. Simulation of the Chernobyl dispersion with a 3-D hemispheric tracer model , 1989 .
[59] Patrick Knupp,et al. Code Verification by the Method of Manufactured Solutions , 2000 .
[60] Paul Charbonneau,et al. Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection , 2017 .
[61] Mark A. Taylor,et al. A standard test case suite for two-dimensional linear transport on the sphere , 2012 .