Off-Line and On-Line Trajectory Planning

The basic problem of motion planning is to select a path, or trajectory, from a given initial state to a destination state, while avoiding collisions with known static and moving obstacles. Ideally, it is desirable that the trajectory to the goal be computed online, during motion, to allow the robot react to changes in the environment, to a moving target, and to errors encountered during motion. However, the inherent difficulty in solving this problem, which stems from the high dimensionality of the search space, the geometric and kinematic properties of the obstacles, the cost function to be optimized, and the robot’s kinematic and dynamic model, may hinder a sufficiently fast solution to be computed online, given reasonable computational resources. As a result, existing work on motion planning can be classified into off-line and on-line planning. Off-line planners compute the entire path or trajectory to the goal before motion begins, whereas on-line planners generate the trajectory to the goal incrementally, during motion. This chapter reviews the main approaches to off-line and on-line planning, and presents one solution for each.

[1]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[2]  Jean-Jacques E. Slotine,et al.  Improving the Efficiency of Time-Optimal Path-Following Algorithms , 1988, 1988 American Control Conference.

[3]  Mathukumalli Vidyasagar,et al.  Path planning for moving a point object amidst unknown obstacles in a plane: the universal lower bound on the worst path lengths and a classification of algorithms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[4]  Roy Eagleson Theory and practice of robotics and manipulators: Proceedings of RoManSy'84: The Fifth CISM-IFToMM Symposium A. Morecki, G. Bianchi and K. Kedzior, Eds. The MIT Press, 1985 , 1989 .

[5]  Z. Shiller,et al.  Time-optimal obstacle avoidance for robotic manipulators , 1995 .

[6]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[7]  Mary W. Cooper,et al.  Dynamic Programming and the Calculus of Variations , 1981 .

[8]  Quang-Cuong Pham Characterizing and addressing dynamic singularities in the time-optimal path parameterization algorithm , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Bruce Randall Donald,et al.  A provably good approximation algorithm for optimal-time trajectory planning , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[10]  S. Arimoto,et al.  Path Planning Using a Tangent Graph for Mobile Robots Among Polygonal and Curved Obstacles , 1992 .

[11]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[12]  J. Brian Burns,et al.  Path planning using Laplace's equation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[13]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[14]  Zvi Shiller,et al.  Online obstacle avoidance at high speeds † , 2013, Int. J. Robotics Res..

[15]  Z. Shiller,et al.  Computation of Path Constrained Time Optimal Motions With Dynamic Singularities , 1992 .

[16]  Steven Dubowsky,et al.  On computing the global time-optimal motions of robotic manipulators in the presence of obstacles , 1991, IEEE Trans. Robotics Autom..

[17]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[18]  P. Kiriazov,et al.  A Method for Time-optimal Control of Dynamically Constrained Manipulators , 1985 .

[19]  J. Ball OPTIMIZATION—THEORY AND APPLICATIONS Problems with Ordinary Differential Equations (Applications of Mathematics, 17) , 1984 .

[20]  Steven Dubowsky,et al.  Robot Path Planning with Obstacles, Actuator, Gripper, and Payload Constraints , 1989, Int. J. Robotics Res..

[21]  Jur P. van den Berg,et al.  The visibility--voronoi complex and its applications , 2005, EuroCG.

[22]  Friedrich Pfeiffer,et al.  A concept for manipulator trajectory planning , 1987, IEEE J. Robotics Autom..

[23]  Zvi Shiller,et al.  Time optimal motions of manipulators with actuator dynamics , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[24]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[25]  R. A. Jarvis,et al.  Collision-free trajectory planning using distance transforms , 1985 .

[26]  Elon Rimon,et al.  VC-method: high-speed navigation of a uniformly braking mobile robot using position-velocity configuration space , 2012, Autonomous Robots.

[27]  Zvi Shiller,et al.  Dynamic motion planning of autonomous vehicles , 1991, IEEE Trans. Robotics Autom..

[28]  Zvi Shiller,et al.  Dual Dijkstra Search for paths with different topologies , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[29]  H. Hermes,et al.  Foundations of optimal control theory , 1968 .

[30]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[31]  Hans Seywald,et al.  Trajectory optimization based on differential inclusion , 1994 .

[32]  David M. Auslander,et al.  Optimal Control of a Robot with Obstacles , 1984, 1984 American Control Conference.

[33]  Larry H. Matthies,et al.  An autonomous path planner implemented on the Rocky 7 prototype microrover , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[34]  Howie Choset,et al.  Sensor Based Planing, Part II: Incremental COnstruction of the Generalized Voronoi Graph , 1995, ICRA.

[35]  Zvi Shiller,et al.  Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation , 1994, IEEE Trans. Robotics Autom..

[36]  Emilio Frazzoli,et al.  Anytime Motion Planning using the RRT* , 2011, 2011 IEEE International Conference on Robotics and Automation.

[37]  J. Warga Review: Lamberto Cesari, Optimization—Theory and applications, Problems with ordinary differential equations , 1983 .

[38]  Zvi Shiller,et al.  Computing a set of local optimal paths through cluttered environments and over open terrain , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[39]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[40]  Pierre Bessière,et al.  The Ariadne's Clew Algorithm , 1993, J. Artif. Intell. Res..

[41]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[42]  Paul M. Griffin,et al.  Path planning for a mobile robot , 1992, IEEE Trans. Syst. Man Cybern..

[43]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[44]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[45]  Eugene Lawler,et al.  Combinatorial optimization , 1976 .

[46]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[47]  Giuseppe Carbone,et al.  Collision free trajectory planning for hybrid manipulators , 2012 .

[48]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[49]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[50]  Nancy M. Amato,et al.  Choosing good distance metrics and local planners for probabilistic roadmap methods , 2000, IEEE Trans. Robotics Autom..

[51]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[52]  Bernard Roth,et al.  The Near-Minimum-Time Control Of Open-Loop Articulated Kinematic Chains , 1971 .

[53]  F. Chernousko,et al.  Time-optimal control for robotic manipulators , 1989 .

[54]  Arthur E. Bryson,et al.  Dynamic Optimization , 1998 .

[55]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[56]  E. Freund Fast Nonlinear Control with Arbitrary Pole-Placement for Industrial Robots and Manipulators , 1982 .

[57]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[58]  James E. Bobrow,et al.  Optimal Robot Path Planning Using the Minimum-Time Criterion , 2022 .

[59]  Steven M. LaValle,et al.  Motion Planning : The Essentials , 2011 .

[60]  John M. Hollerbach,et al.  Planning a minimum-time trajectories for robot arms , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[61]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[62]  Howie Choset,et al.  Sensor based planning. II. Incremental construction of the generalized Voronoi graph , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[63]  Ehud Rivlin,et al.  TangentBug: A Range-Sensor-Based Navigation Algorithm , 1998, Int. J. Robotics Res..