A Graded Meaning of Formulas in Approximation Spaces

The aim of the paper is to introduce degrees of satisfiability as well as a graded form of the meaning of formulas and their sets in the approximation space framework.

[1]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[2]  Anna Gomoli A Graded Meaning of Formulas in Approximation Spaces , 2004 .

[3]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[4]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[5]  Z. Pawlak,et al.  Rough membership functions , 1994 .

[6]  Jarosław Stepaniuk,et al.  Knowledge discovery by application of rough set models , 2000 .

[7]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[8]  Masahiro Inuiguchi,et al.  On Rough Sets under Generalized Equivalence Relations , 2001, JSAI Workshops.

[9]  A. Skowron,et al.  Towards adaptive calculus of granules , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[10]  D. Vanderpooten Similarity Relation as a Basis for Rough Approximations , 1995 .

[11]  U. Wybraniec-Skardowska On a generalization of approximation space , 1989 .

[12]  W. Zakowski APPROXIMATIONS IN THE SPACE (U,π) , 1983 .

[13]  Andrzej Skowron,et al.  Rough mereology in information systems. A case study: qualitative spatial reasoning , 2000 .

[14]  Daniel Vanderpooten,et al.  A Generalized Definition of Rough Approximations Based on Similarity , 2000, IEEE Trans. Knowl. Data Eng..

[15]  Mihir K. Chakraborty,et al.  Graded Consequence: Further Studies , 1995, J. Appl. Non Class. Logics.

[16]  Mihir K. Chakraborty,et al.  Graded Consequence and Some Metalogical Notions Generalized , 1997, Fundam. Informaticae.

[17]  L. Zadeh,et al.  Fuzzy Logic for the Management of Uncertainty , 1992 .

[18]  Tsau Young Lin,et al.  Granular Computing: Fuzzy Logic and Rough Sets , 1999 .

[19]  Anna Gomolinska,et al.  A Comparative Study of Some Generalized Rough Approximations , 2002, Fundam. Informaticae.

[20]  A. Skowron,et al.  Towards adaptive calculus of granules , 1998 .

[21]  Hung Son Nguyen,et al.  Granular Computing: a Rough Set Approach , 2001, Comput. Intell..

[22]  Andrzej Skowron,et al.  Rough-Fuzzy Hybridization: A New Trend in Decision Making , 1999 .

[23]  Alexis Tsoukiàs,et al.  Incomplete Information Tables and Rough Classification , 2001, Comput. Intell..

[24]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[25]  S. Tsumoto,et al.  Rough set methods and applications: new developments in knowledge discovery in information systems , 2000 .