A Fundamental Limitation on Maximum Parameter Dimension for Accurate Estimation With Quantized Data

It is revealed that there is a link between the quantization approach employed and the dimension of the vector parameter which can be accurately estimated by a quantized estimation system. A critical quantity called inestimable dimension for quantized data (IDQD) is introduced, which does not depend on the quantization regions and the statistical models of the observations but instead depends only on the number of sensors and on the precision of the vector quantizers employed by the system. It is shown that the IDQD describes a quantization-induced fundamental limitation on the estimation capabilities of the system. To be specific, if the dimension of the desired vector parameter is larger than the IDQD of the quantized estimation system, then the Fisher information matrix for estimating the desired vector parameter is singular, and, moreover, there exist infinitely many nonidentifiable vector parameter points in the vector parameter space. Furthermore, it is shown that under some common assumptions on the statistical models of the observations and the quantization system, a smaller IDQD can be obtained, which can specify an even more limiting quantization induced fundamental limitation on the estimation capabilities of the system.

[1]  Arye Nehorai,et al.  On identifiability and information-regularity in parametrized normal distributions , 1997 .

[2]  Roger J. Bowden,et al.  THE THEORY OF PARAMETRIC IDENTIFICATION , 1973 .

[3]  Xiaokang Lin,et al.  Maximum Likelihood Estimation From Sign Measurements With Sensing Matrix Perturbation , 2013, IEEE Transactions on Signal Processing.

[4]  Pramod K. Varshney,et al.  Robust distributed maximum likelihood estimation with dependent quantized data , 2012, Autom..

[5]  H. Vincent Poor,et al.  An introduction to signal detection and estimation (2nd ed.) , 1994 .

[6]  G.B. Giannakis,et al.  Distributed compression-estimation using wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[7]  Peter Willett,et al.  Asymptotic Design of Quantizers for Decentralized MMSE Estimation , 2007, IEEE Transactions on Signal Processing.

[8]  Rick S. Blum,et al.  Asymptotically Optimum Distributed Estimation in the Presence of Attacks , 2015, IEEE Transactions on Signal Processing.

[9]  Pramod K. Varshney,et al.  Optimal Identical Binary Quantizer Design for Distributed Estimation , 2012, IEEE Transactions on Signal Processing.

[10]  Alfred O. Hero,et al.  Exploring estimator bias-variance tradeoffs using the uniform CR bound , 1996, IEEE Trans. Signal Process..

[11]  B. C. Ng,et al.  On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.

[12]  Pramod K. Varshney,et al.  Nonparametric One-Bit Quantizers for Distributed Estimation , 2008, IEEE Transactions on Signal Processing.

[13]  Jun Fang,et al.  Hyperplane-Based Vector Quantization for Distributed Estimation in Wireless Sensor Networks , 2009, IEEE Transactions on Information Theory.

[14]  Rick S. Blum,et al.  Attack Detection in Sensor Network Target Localization Systems With Quantized Data , 2017, IEEE Transactions on Signal Processing.

[15]  Toby Berger,et al.  Estimation via compressed information , 1988, IEEE Trans. Inf. Theory.

[16]  Hao He,et al.  On Quantizer Design for Distributed Bayesian Estimation in Sensor Networks , 2014, IEEE Transactions on Signal Processing.

[17]  Thomas L. Marzetta,et al.  Parameter estimation problems with singular information matrices , 2001, IEEE Trans. Signal Process..

[18]  Pramod K. Varshney,et al.  Channel Aware Target Localization With Quantized Data in Wireless Sensor Networks , 2009, IEEE Transactions on Signal Processing.

[19]  Rick S. Blum,et al.  Attacks on Sensor Network Parameter Estimation With Quantization: Performance and Asymptotically Optimum Processing , 2015, IEEE Transactions on Signal Processing.

[20]  R. Ho Algebraic Topology , 2022 .

[21]  Rick S. Blum,et al.  Functional Forms of Optimum Spoofing Attacks for Vector Parameter Estimation in Quantized Sensor Networks , 2016, IEEE Transactions on Signal Processing.

[22]  T. Rothenberg Identification in Parametric Models , 1971 .

[23]  A. Wald Note on the Consistency of the Maximum Likelihood Estimate , 1949 .

[24]  P.K. Varshney,et al.  Target Location Estimation in Sensor Networks With Quantized Data , 2006, IEEE Transactions on Signal Processing.

[25]  Amy R. Reibman,et al.  Design of quantizers for decentralized estimation systems , 1993, IEEE Trans. Commun..

[26]  E. Lehmann Elements of large-sample theory , 1998 .

[27]  Alejandro Ribeiro,et al.  Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case , 2006, IEEE Transactions on Signal Processing.

[28]  Ananthram Swami,et al.  Quantization for Maximin ARE in Distributed Estimation , 2007, IEEE Transactions on Signal Processing.

[29]  Carlos Alberto de Bragança Pereira,et al.  ON IDENTIFIABILITY OF PARAMETRIC STATISTICAL MODELS , 1994 .

[30]  Petre Stoica,et al.  On non-singular information matrices and local identifiability , 1982 .

[31]  H. V. Trees,et al.  Exploring Estimator BiasVariance Tradeoffs Using the Uniform CR Bound , 2007 .

[32]  Rick S. Blum,et al.  Parameter Estimation From Quantized Observations in Multiplicative Noise Environments , 2015, IEEE Transactions on Signal Processing.

[33]  Arye Nehorai,et al.  Identifiability in array processing models with vector-sensor applications , 1996, IEEE Trans. Signal Process..