Divergence study of a high-aspect-ratio, forward swept wing
暂无分享,去创建一个
An experimental wind-tunnel study to determine the divergence characteristics of a high-aspect ratio, forward-swept wing has been conducted in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT). The rectangular wing used for this study had a panel aspect ratio of 9.16 (lambda = 0 deg.) and the sweep angle could be set at lambda = 0 deg., -15 deg., -30 deg., -45 deg., or -60 deg. A rectangular wing tip shape was tested at each of these sweep angles. In addition, a tip shape parallel to the freestream flow was tested for a wing sweep angle of lambda = -45 deg. The root of the wing was cantilever mounted to the wall of the wind tunnel. Divergence conditions were measured at M = 0.4 for each sweep angle and tip configuration tested. Subcritical response techniques were used to extrapolate to the divergence conditions during the wind-tunnel test. The primary objective of this test was to obtain data which could be used to verify for this configuration the divergence prediction capability of an aeroelastic analysis code. Subsonic lifting surface theory (kernel function) aerodynamics are utilized by this particular code. The analytical predictions of divergence were found to be significantly conservative at all forward sweep angles. At lambda = -45 deg., the analysis was 14 percent conservative. The effect of the two tip shapes on the divergence dynamic pressure was predicted accurately by the analysis. The divergence condition for the tip shape parallel to the flow occurred at a dynamic pressure 14 percent higher than the divergence condition with a rectangular tip shape.
[1] F. J. Perry,et al. Flowfield produced by trailing vortices in the vicinity of the ground , 1971 .
[2] D. Wilson,et al. Vortex-airfoil interaction tests , 1986 .
[3] Krishnamurty Karamcheti,et al. Principles of ideal-fluid aerodynamics , 1966 .
[4] Robert M. Bennett,et al. An Automated Procedure for Computing Flutter Eigenvalues , 1973 .