Structure, spectral analysis and microwave dielectric properties of novel x(NaBi)0.5MoO4-(1-x)Bi2/3MoO4 (x = 0.2 ∼ 0.8) ceramics with low sintering temperatures

[1]  Jinzhan Su,et al.  Temperature stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications , 2020 .

[2]  L. Pang,et al.  Microwave dielectric properties of low firing temperature stable scheelite structured (Ca,Bi)(Mo,V)O4 solid solution ceramics for LTCC applications , 2019, Journal of the European Ceramic Society.

[3]  B. Jin,et al.  High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture , 2017 .

[4]  Chunchun Li,et al.  Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M = Mo, W) and their chemical compatibility with metal electrodes , 2017 .

[5]  Hong Wang,et al.  Low temperature co-fired ceramics with ultra-low sintering temperature: A review , 2016 .

[6]  X. Yao,et al.  Structure, Infrared Reflectivity and Microwave Dielectric Properties of (Na0.5La0.5)MoO4–(Na0.5Bi0.5)MoO4 Ceramics , 2016 .

[7]  Hongtao Yu,et al.  Ultra-low sintering temperature ceramics for LTCC applications: a review , 2015, Journal of Materials Science: Materials in Electronics.

[8]  Hong Wang,et al.  Ultra-low Sintering Temperature Microwave Dielectric Ceramics Based on Na2O-MoO3 Binary System , 2015 .

[9]  B. Jin,et al.  Structure-property relationships of novel microwave dielectric ceramics with low sintering temperatures: (Na(0.5x)Bi(0.5x)Ca(1-x))MoO(4). , 2014, Dalton transactions.

[10]  X. Yao,et al.  Structure, phase evolution, and microwave dielectric properties of (Ag0.5Bi0.5)(Mo0.5W0.5)O4 ceramic with ultralow sintering temperature. , 2014, Inorganic chemistry.

[11]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[12]  R. Ratheesh,et al.  High Q ceramics in the ACe2(MoO4)4 (A = Ba, Sr and Ca) system for LTCC applications , 2013 .

[13]  P. Clem,et al.  Effects of Crystal Structure on the Microwave Dielectric Properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) Ceramics , 2012 .

[14]  Hua-rui Xu,et al.  Microwave Dielectric Properties of Ca4La2Ti5−x(Mg1/3Nb2/3)xO17 Ceramics , 2012 .

[15]  Hong Wang,et al.  Low temperature firing microwave dielectric ceramics (K0.5Ln0.5)MoO4 (Ln = Nd and Sm) with low dielectric loss , 2011 .

[16]  Hong Wang,et al.  Phase transition, Raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing (Na0.5xBi1−0.5x)(MoxV1−x)O4 solid solution ceramics with scheelite structures , 2011 .

[17]  Hong Wang,et al.  Microwave dielectric properties of (ABi)1/2MoO4 (A = Li, Na, K, Rb, Ag) type ceramics with ultra-low firing temperatures , 2011 .

[18]  Xiang Ding,et al.  New Low‐Loss Microwave Dielectric Material ZnTiNbTaO8 , 2011 .

[19]  Hong Wang,et al.  Bi2O3–MoO3 Binary System: An Alternative Ultralow Sintering Temperature Microwave Dielectric , 2009 .

[20]  Hong Wang,et al.  Influence of sintering process on the microwave dielectric properties of Bi(V0.008Nb0.992)O4 ceramics , 2009 .

[21]  Xiangcheng Chu,et al.  Crystal structure and dielectric properties of (1−x)Ca0.61Nd0.26TiO3+xNd(Mg1/2Ti1/2)O3 complex perovskite at microwave frequencies , 2008 .

[22]  D. Suvorov,et al.  Sintering and Dielectric Characterization of Pseudoternary Compounds from the Bi2O3–TiO2–TeO2 System , 2007 .

[23]  I. Reaney,et al.  Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks , 2006 .

[24]  D. Suvorov,et al.  Phase Formation and Dielectric Characterization of the Bi2O3–TeO2 System Prepared in an Oxygen Atmosphere , 2004 .

[25]  Ming Hung Weng,et al.  Improved high q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature , 2001 .

[26]  Alexander A. Sobol,et al.  Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers , 2000 .

[27]  Alexander A. Sobol,et al.  Raman spectroscopy of crystals for stimulated Raman scattering , 1999 .

[28]  M. Ma̧czka,et al.  Polarized Raman spectra of NaBi(MoO4)2 crystal and order—disorder effect in solid scheelites , 1994 .

[29]  R. Teller Refinement of some Na0.5−xM'0.5+x/3□2x/3MoO4, M' = Bi, Ce, La, scheelite structures with powder neutron and X-ray diffraction data , 1992 .

[30]  G. D. Rieck,et al.  The crystal structure of Bi2(MoO4)3 , 1973 .

[31]  E. Lippincott,et al.  Infrared spectra of some scheelite structures , 1968 .

[32]  W. P. Doyle,et al.  Infra-red spectra of anhydrous molybdates and tungstates , 1966 .

[33]  Dawei Wang,et al.  Microwave dielectric properties of temperature‐stable zircon‐type (Bi, Ce)VO 4 solid solution ceramics , 2019, Journal of the American Ceramic Society.

[34]  W. Lei,et al.  Controllable τf value of barium silicate microwave dielectric ceramics with different Ba/Si ratios , 2018 .

[35]  Matjaz Valant,et al.  Dielectric characterisation of ceramics from the TiO2–TeO2 system , 2001 .

[36]  I. Awai,et al.  Far‐Infrared Reflection Spectra of Dielectric Ceramics for Microwave Applications , 1994 .