Canonical polyadic decomposition (CPD) of big tensors with low multilinear rank

Tensor decomposition methods have been widely applied to big data analysis as they bring multiple modes and aspects of data to a unified framework, which allows us to discover complex internal structures and correlations of data. Unfortunately most existing approaches are not designed to meet the challenges posed by big data dilemma. This paper attempts to improve the scalability of tensor decompositions and makes two contributions: A flexible and fast algorithm for the CP decomposition (FFCP) of tensors based on their Tucker compression; A distributed randomized Tucker decomposition approach for arbitrarily big tensors but with relatively low multilinear rank. These two algorithms can deal with huge tensors, even if they are dense. Extensive simulations provide empirical evidence of the validity and efficiency of the proposed algorithms.

[1]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[2]  Andrzej Cichocki,et al.  L1-Regularized Multiway Canonical Correlation Analysis for SSVEP-Based BCI , 2013, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[3]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[4]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorizations : An algorithmic perspective , 2014, IEEE Signal Processing Magazine.

[5]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[6]  Andrzej Cichocki,et al.  Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations , 2013, IEEE Transactions on Signal Processing.

[7]  Dinggang Shen,et al.  Latent Representation Learning for Alzheimer’s Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data , 2019, IEEE Transactions on Medical Imaging.

[8]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[9]  Xingyu Wang,et al.  Frequency Recognition in SSVEP-Based BCI using Multiset Canonical Correlation Analysis , 2013, Int. J. Neural Syst..

[10]  Andrzej Cichocki,et al.  Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[11]  Pierre Comon,et al.  Fast Decomposition of Large Nonnegative Tensors , 2015, IEEE Signal Processing Letters.

[12]  Andrzej Cichocki,et al.  Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness , 2014, IEEE Transactions on Image Processing.

[13]  Jean Ponce,et al.  A Tensor-Based Algorithm for High-Order Graph Matching , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[15]  Nikos D. Sidiropoulos,et al.  From K-Means to Higher-Way Co-Clustering: Multilinear Decomposition With Sparse Latent Factors , 2013, IEEE Transactions on Signal Processing.

[16]  Andrzej Cichocki,et al.  Linked Component Analysis From Matrices to High-Order Tensors: Applications to Biomedical Data , 2015, Proceedings of the IEEE.

[17]  Michael W. Mahoney,et al.  A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .

[18]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[19]  Xingyu Wang,et al.  Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI , 2019, IEEE Transactions on Cybernetics.

[20]  Nikos D. Sidiropoulos,et al.  ParCube: Sparse Parallelizable Tensor Decompositions , 2012, ECML/PKDD.

[21]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[22]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[23]  Volkan Cevher,et al.  Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective , 2010, Proceedings of the IEEE.

[24]  Xingyu Wang,et al.  Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation , 2016, Neurocomputing.

[25]  Anand Rangarajan,et al.  Image Denoising Using the Higher Order Singular Value Decomposition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[27]  Rasmus Bro,et al.  Improving the speed of multiway algorithms: Part II: Compression , 1998 .

[28]  Tao Zhou,et al.  Dual Shared-Specific Multiview Subspace Clustering , 2020, IEEE Transactions on Cybernetics.

[29]  Andrzej Cichocki,et al.  Canonical Polyadic Decomposition Based on a Single Mode Blind Source Separation , 2012, IEEE Signal Processing Letters.

[30]  Mubarak Shah,et al.  Action MACH a spatio-temporal Maximum Average Correlation Height filter for action recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Andrzej Cichocki,et al.  Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[32]  A. Cichocki,et al.  Generalizing the column–row matrix decomposition to multi-way arrays , 2010 .

[33]  Dinggang Shen,et al.  Strength and similarity guided group-level brain functional network construction for MCI diagnosis , 2019, Pattern Recognit..

[34]  Nikos D. Sidiropoulos,et al.  A parallel algorithm for big tensor decomposition using randomly compressed cubes (PARACOMP) , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[35]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[36]  Thomas S. Huang,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation. , 2011, IEEE transactions on pattern analysis and machine intelligence.

[37]  Christos Faloutsos,et al.  GigaTensor: scaling tensor analysis up by 100 times - algorithms and discoveries , 2012, KDD.

[38]  Volkan Cevher,et al.  Convex Optimization for Big Data: Scalable, randomized, and parallel algorithms for big data analytics , 2014, IEEE Signal Processing Magazine.

[39]  Tao Zhou,et al.  Multiview Latent Space Learning With Feature Redundancy Minimization , 2020, IEEE Transactions on Cybernetics.

[40]  Nico Vervliet,et al.  Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis , 2014, IEEE Signal Processing Magazine.

[41]  Charalampos E. Tsourakakis MACH: Fast Randomized Tensor Decompositions , 2009, SDM.

[42]  Xingyu Wang,et al.  SSVEP recognition using common feature analysis in brain–computer interface , 2015, Journal of Neuroscience Methods.

[43]  Andrzej Cichocki,et al.  Advances in PARAFAC Using Parallel Block Decomposition , 2009, ICONIP.

[44]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[45]  Lieven De Lathauwer,et al.  Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures , 2007, IEEE Transactions on Signal Processing.