Stannylene or metallastanna(IV)ocane: a matter of formalism.

The s basicity of electron-rich transition metals (TMs) plays a crucial role in Brønsted acid–base reactions of TM complexes, such as [H2Fe(CO)4] and [HCo(CO)4] (strong acids, poor s-basicity of the corresponding conjugate bases) and was shown to increase upon coordination of good donor ligands L, such as phosphines; that is, lowered acidity of [H2Fe(CO)3(PPh3)] or [HCo(CO)3(PPh3)]. [2] Thus, P and/or S donors bearing electron-rich TM centers have been shown to support s donation towards other main-group-element (E) Lewis acidic centers, for example in the so-called metallaboratranes I and II and Be, Al, and Ga compounds of type III (Scheme 1). Very recently, we have described compounds IV–VII comprising {L5TM(d )} moieties that exhibit s donation towards electronically saturated Lewis acidic centers E, that is, Si and Sn. Gabbaï et al. have reported similar intermetallic interactions in the heterobimetallic complexes VIII–X (Scheme 1), which comprise d TM donor sites with an almost square-planar coordination sphere. Whereas compounds IV–X were obtained by a straightforward route starting from sources that comprise TM and E in the desired oxidation states, herein we present a (formal) redox approach, which involves a reaction sequence starting from a stannylene (SnCl2) and yielding hypercoordinate tin compounds that can be regarded as palladastanna(IV)ocanes. In a convenient one-pot synthesis, [PdCl2(PPh3)2] was treated with the potassium salt of 1-methyl-2-mercaptoimidazole (methimazole, Hmt) and [SnCl2(dioxane)] (Scheme 2) to afford compound 1. Substitution of the tin-bound chlorine atoms with a dianionic tridentate ligand afforded compound 2, which comprises a hexacoordinate tin atom (Scheme 2). Reference compounds 3 and 4 (comprising Sn and Sn, respectively, and the same tridentate ONN ligand as 2) were prepared as references for spectroscopic properties. The molecular structures of 1–4 were confirmed crystallographically (see Figure 1 and the Supporting Information). Scheme 1. Selected examples of TM–base complexes with electrophilic main-group-element sites (“Z-type ligands”). Cy=cyclohexyl.

[1]  J. Autschbach,et al.  (29)Si DFT/NMR observation of spin-orbit effect in metallasilatrane sheds some light on the strength of the metal→silicon interaction. , 2011, Angewandte Chemie.

[2]  T. Langer,et al.  Ylenes in the M(II)→Si(IV) (M=Si, Ge, Sn) coordination mode. , 2010, Chemistry.

[3]  M. Lutz,et al.  Oxidative addition of Sn-C bonds on palladium(0): identification of palladium-stannyl species and a facile synthetic route to diphosphinostannylene- palladium complexes , 2010 .

[4]  H. Braunschweig,et al.  Late-transition-metal complexes as tunable Lewis bases. , 2010, Chemistry.

[5]  D. Bourissou,et al.  Hypervalent silicon compounds by coordination of diphosphine-silanes to gold. , 2010, Chemistry.

[6]  C. Wade,et al.  A mercury-->antimony interaction. , 2010, Angewandte Chemie.

[7]  C. Wade,et al.  A MercuryAntimony Interaction , 2010 .

[8]  A. Spek,et al.  Dichlorostannylene complexes of group 10 metals, a unique bonding mode stabilized by bridging 2-pyridyldiphenylphosphine ligands. , 2010, Dalton transactions.

[9]  A. Willis,et al.  Metallaboratranes: Bis- and Tris(methimazolyl)borane Complexes of Group 9 Metal Carbonyls and Thiocarbonyls , 2010 .

[10]  Erica Brendler,et al.  Metallasilatrane: Palladium(II) und Platin(II) als Elektronenpaardonoren für Silicium(IV) , 2010 .

[11]  E. Brendler,et al.  Metallasilatranes: palladium(II) and platinum(II) as lone-pair donors to silicon(IV). , 2010, Angewandte Chemie.

[12]  D. Bourissou,et al.  Phosphine-Boranes and Related Ambiphilic Compounds , 2010 .

[13]  D. Bourissou,et al.  Gold-silane and gold-stannane complexes: saturated molecules as sigma-acceptor ligands. , 2009, Angewandte Chemie.

[14]  K. Jurkschat,et al.  Palladium and Molybdenum Complexes of the Heteroleptic Organostannylene [2,6-(Me2NCH2)2C6H3]SnCl , 2009 .

[15]  C. Müller,et al.  Knüpfung von Thiostannat‐Sn‐Sn‐Bindungen in Lösung: In‐situ‐Bildung des gemischtvalenten funktionalisierten Komplexes [{(RSnIV)2(μ‐S)2}3SnIII2S6] , 2009 .

[16]  S. Dehnen,et al.  Thiostannate tin-tin bond formation in solution: in situ generation of the mixed-valent, functionalized complex [{(RSn(IV))2(mu-S)2}3Sn(III)2S6]. , 2009, Angewandte Chemie.

[17]  Krzysztof Radacki,et al.  Komplexe mit dativen Bindungen zwischen d‐ und s‐Block‐Metallen: Synthese und Struktur von [(Cy3P)2Pt‐Be(Cl)X] (X=Cl, Me) , 2009 .

[18]  H. Braunschweig,et al.  Complexes with dative bonds between d- and s-block metals: synthesis and structure of [(Cy3P)2Pt-Be(Cl)X] (X = Cl, Me). , 2009, Angewandte Chemie.

[19]  D. Bourissou,et al.  Gold(I) complexes of phosphanyl gallanes: from interconverting to separable coordination isomers. , 2009, Angewandte Chemie.

[20]  J. Wagler,et al.  Ring Opening of Organosilicon-Substituted Benzoxazolinone: A Convenient Route to Chelating Ureato and Carbamido Ligands , 2008 .

[21]  H. Braunschweig,et al.  Reactivity of Pt0 complexes toward gallium(III) halides: synthesis of a platinum gallane complex and oxidative addition of gallium halides to Pt0. , 2008, Inorganic chemistry.

[22]  L. Wesemann,et al.  Iridium Coordination Compounds of Stanna-closo-dodecaborate , 2008 .

[23]  D. Bourissou,et al.  A Zwitterionic Gold(I) Complex from an Ambiphilic Diphosphino−Alane Ligand , 2008 .

[24]  D. Bourissou,et al.  Metallaboratranes derived from a triphosphanyl-borane: intrinsic C3 symmetry supported by a Z-type ligand. , 2008, Angewandte Chemie.

[25]  Rainer Pöttgen,et al.  Oktaedrische Koordinationsverbindungen der Ni, Pd, Pt‐Triade , 2008 .

[26]  F. Schappacher,et al.  Octahedral coordination compounds of the Ni, Pd, Pt triad. , 2008, Angewandte Chemie.

[27]  Krzysztof Radacki,et al.  Wechselwirkung zwischen d- und p-Block-Metallen: Synthese und Struktur von Platin-Alan-Addukten† , 2007 .

[28]  H. Braunschweig,et al.  Interaction between d- and p-block metals: synthesis and structure of platinum-alane adducts. , 2007, Angewandte Chemie.

[29]  V. Khrustalev,et al.  Can Sn(OCH2CH2NMe2)2 behave as a stannylene? Equatorial-axial isomerism in the tin(II)-iron(0) complex (Me2NCH2CH2O)2Sn-Fe(CO)4. , 2007, Dalton transactions.

[30]  Torben Gädt,et al.  Stanna-closo-dodecaborate: The Crystal Structure of [Li(thf)3]2[SnB11H11], Vibrational Spectroscopy, Thermal Analysis and DFT Calculations† , 2007 .

[31]  H. Werner Elektronenreiche Halbsandwich‐Komplexe — Metall‐Basen par excellence , 2006 .

[32]  Xuemei Zhao,et al.  Synthesis and crystal structures of cyclodiazastannoxides fused cyclopentadienyl M–Sn (M = Mo, W) bonded organometallic heterocycle , 2005 .

[33]  R. Pöttgen,et al.  Structural relationships, phase stability and bonding of compounds PdSnn (n=2, 3, 4) , 2004 .

[34]  K. Jurkschat,et al.  The Isoelectronic Replacement of E = P+ and Si in the Trinuclear Organotin−Oxo Clusters [Ph2E(OSntBu2)2O·tBu2Sn(OH)2] , 2003 .

[35]  E. Tiekink,et al.  Observation of inter- and intramolecular CH⋯F hydrogen bonding in Gingras' salt: [n-Bu4N]+[Ph3SnF2]− , 2002 .

[36]  G. Yap,et al.  Synthesis and structural characterization of the first trialkylguanidinate and hexahydropyramidopyramidinate complexes of tin , 2002 .

[37]  H. Gornitzka,et al.  (Schiff base) divalent group 14 element species: manganese and iron complexes (Salen)M=Mn(Co)2(eta 5-C5H5) (M14 = Ge, Sn, Pb) and (Salen)Sn=Fe(CO)4. , 2000, Inorganic chemistry.

[38]  H. Gornitzka,et al.  Transition Metal Complexes of (Schiff Base)Divalent Group 14 Element Species [(salen)M]n=M′(CO)6–n (n = 1, 2; M = Ge, Sn, Pb; M′ = Cr, W) , 2000 .

[39]  Andrew J. P. White,et al.  Der Stachel des Skorpions: ein Metallaboratran , 1999 .

[40]  Hill,et al.  The Sting of the Scorpion: A Metallaboratrane. , 1999, Angewandte Chemie.

[41]  P. Lippens Interpretation of the119SnMössbauer isomer shifts in complex tin chalcogenides , 1999 .

[42]  M. Reiher,et al.  On the Bonding Properties of Diphosphanylmethanide Complexes with the Group‐14 Elements Silicon, Germanium, Tin, and Lead in Their Divalent Oxidation States , 1999 .

[43]  R. Pöttgen,et al.  New Stannides CaTSn2 (T = Rh, Pd, Ir) and Ca2Pt3Sn5 - Synthesis, Structure and Chemical Bonding , 1999 .

[44]  M. Reiher,et al.  Bonding Properties of Amidinate Complexes of the Group 14 Elements Silicon, Germanium, Tin, and Lead in Their Divalent and Tetravalent Oxidation States† , 1999 .

[45]  O. Walter,et al.  Divalent Tin and Lead Compounds EX2 Acting as Bridging Ligands in [{(CO)5M}2EX2]2− (E Sn, Pb; M Cr, Mo, W): Preparation and Properties† , 1997 .

[46]  F. Lahoz,et al.  Synthesis and structure of Ru{Ph6Sn3(.mu.-OMe)2}(.eta.2-H2)(CO)(PiPr3) containing a tridentate tin donor ligand and coordinated dihydrogen , 1995 .

[47]  V. Zanotti,et al.  Heats of protonation of transition-metal complexes : the effect of phosphine basicity on metal basicity in CpIr(CO)(PR3) and Fe(CO)3(PR3)2 , 1991 .

[48]  J. Cashion,et al.  Crystal Structures, Mössbauer Spectra and Reactivity of Sn,II Salicylideneimines , 1990 .

[49]  H. Werner Electron‐Rich Half‐Sandwich Complexes—Metal Bases par excellence , 1983 .

[50]  P. Harrison,et al.  Derivatives of bivalent germanium, tin, and lead. Part XI. The interaction of tin(II) halides and bis(β-ketoenolates) with di-iron enneacarbonyl , 1975 .

[51]  D. Shriver Transition metal basicity , 1970 .

[52]  H. Haendler,et al.  Some reactions of tin (II) chloride in nonaqueous solution , 1967 .