Effect of crystallographic orientation on single crystal copper nanogrooving behaviors by MD method

This study used a molecular dynamic (MD) method to study the grooving behaviors of single crystal of copper cut with a rigid diamond tool. The crystallographic orientation effects on cutting force and groove morphology are discussed by metallurgical viewpoint. The grooving crystal planes and directions included 0011̅00$$ (001)\left[\overline{1}00\right] $$, 1011̅01$$ (101)\left[\overline{1}01\right] $$, and 10101̅0$$ (101)\left[0\overline{1}0\right] $$. The MD simulation results showed that crystal orientation significantly affected the grooving behaviors of single crystal copper. The cutting along different orientations led to the number of slip system difference. The simulation results showed that grooving on (101) along 01̅0$$ \left[0\overline{1}0\right] $$ direction with a rectangular tool can obtain the suitable rectangular slot but get a groove with “V” shape cross section in 1011̅01$$ (101)\left[\overline{1}01\right] $$ grooving.

[1]  K. Maekawa,et al.  Friction and tool wear in nano-scale machining—a molecular dynamics approach , 1995 .

[2]  Xuesen Zhao,et al.  Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method , 2014, Nanoscale Research Letters.

[3]  Fengzhou Fang,et al.  Nanometric cutting of copper: A molecular dynamics study , 2006 .

[4]  I. F. Stowers,et al.  A molecular dynamics model of the orthogonal cutting process , 1990 .

[5]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[6]  Geng Liu,et al.  Understanding Topographic Dependence of Friction with Micro- and Nano-Grooved Surfaces , 2013, Tribology Letters.

[7]  Fengzhou Fang,et al.  Diamond Cutting of Silicon with Nanometric Finish , 1998 .

[8]  Johnson Alloy models with the embedded-atom method. , 1989, Physical review. B, Condensed matter.

[9]  J. Wilks,et al.  Performance of diamonds as cutting tools for precision machining , 1980 .

[10]  J. Dziedzic,et al.  Degradation of a nano-cutting tool: An MD simulation , 2008 .

[11]  N. Chandrasekaran,et al.  M.D. Simulation of nanometric cutting of single crystal aluminum–effect of crystal orientation and direction of cutting , 2000 .

[12]  C. Lu,et al.  Study of Materials Deformation in Nanometric Cutting by Large-scale Molecular Dynamics Simulations , 2009, Nanoscale research letters.

[13]  Ekkard Brinksmeier,et al.  Review on diamond-machining processes for the generation of functional surface structures , 2012 .

[14]  W. Zong,et al.  Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals , 2014, Nanoscale Research Letters.

[15]  Wei Zhou,et al.  A study on mechanism of nano-cutting single crystal silicon , 2007 .

[16]  William G. Hoover,et al.  Interface Tribology Via Nonequilibrium Molecular Dynamics , 1988 .

[17]  Xichun Luo,et al.  Modeling and simulation of the tool wear in nanometric cutting , 2003 .

[18]  Xichun Luo,et al.  Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting , 2011, Nanoscale research letters.

[19]  Jing Shi,et al.  Nano-scale machining of polycrystalline coppers - effects of grain size and machining parameters , 2013, Nanoscale Research Letters.

[20]  N. Chandrasekaran,et al.  Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach , 1998 .

[21]  Kazuo Yamazaki,et al.  A study on the micro tooling for micro/nano milling , 2011 .

[22]  D. Manolakos,et al.  The influence of cutting conditions and cutting tool geometry on the atomistic modeling of precision cutting , 2015 .

[23]  Fengzhou Fang,et al.  Modelling and experimental investigation on nanometric cutting of monocrystalline silicon , 2005 .

[24]  Wei Gao,et al.  Experiments using a nano-machining instrument for nano-cutting brittle materials , 2000 .

[25]  Hui Wang,et al.  Study of AFM-based nanometric cutting process using molecular dynamics , 2010 .

[26]  Mark J. Jackson,et al.  A review of micro and nanomachining from a materials perspective , 2005 .

[27]  Hiroaki Tanaka,et al.  Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation , 1993 .

[28]  Johnson,et al.  Analytic nearest-neighbor model for fcc metals. , 1988, Physical review. B, Condensed matter.

[29]  Yufang Wang,et al.  Study on nanometric cutting of germanium by molecular dynamics simulation , 2013, Nanoscale Research Letters.