Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations

Abstract It is well known that using high-order numerical algorithms to solve fractional differential equations leads to almost the same computational cost with low-order ones but the accuracy (or convergence order) is greatly improved due to the nonlocal properties of fractional operators. Therefore, developing some high-order numerical approximation formulas for fractional derivatives plays a more important role in numerically solving fractional differential equations. This paper focuses on constructing (generalized) high-order fractional-compact numerical approximation formulas for Riesz derivatives. Then we apply the developed formulas to the one- and two-dimension Riesz spatial fractional reaction-dispersion equations. The stability and convergence of the derived numerical algorithms are strictly studied by using the energy analysis method. Finally, numerical simulations are given to demonstrate the efficiency and convergence orders of the presented numerical algorithms.

[1]  Roberto Garrappa,et al.  On the use of matrix functions for fractional partial differential equations , 2011, Math. Comput. Simul..

[2]  Yangquan Chen,et al.  High-order algorithms for Riesz derivative and their applications (II) , 2015, J. Comput. Phys..

[3]  S. Secchi,et al.  Soliton dynamics for fractional Schrödinger equations , 2013, 1305.1804.

[4]  I. Turner,et al.  Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .

[5]  Fawang Liu,et al.  Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains , 2015, J. Comput. Phys..

[6]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[7]  Changpin Li,et al.  High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions , 2015, J. Sci. Comput..

[8]  Cui-Cui Ji,et al.  The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation , 2015, Appl. Math. Comput..

[9]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[10]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[11]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[12]  Yuri M. Dimitrov Higher-Order Numerical Solutions of the Fractional Relaxation-Oscillation Equation using Fractional Integration , 2016, 1603.08733.

[13]  B. Stickler Potential condensed-matter realization of space-fractional quantum mechanics: the one-dimensional Lévy crystal. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  S. Longhi Fractional Schrödinger equation in optics. , 2015, Optics letters.

[15]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[16]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[17]  A. Quaas,et al.  Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  Han Zhou,et al.  Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations , 2012, J. Sci. Comput..

[19]  N. Ford,et al.  Higher order numerical methods for solving fractional differential equations , 2014 .

[20]  Changpin Li,et al.  High-Order Algorithms for Riesz Derivative and Their Applications $(I)$ , 2014 .

[21]  Paolo Paradisi,et al.  A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation , 2016, 1603.05300.

[22]  Francesco Mainardi,et al.  Approximation of Levy-Feller Diffusion by Random Walk , 1999 .

[23]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[24]  Chengming Huang,et al.  An energy conservative difference scheme for the nonlinear fractional Schrödinger equations , 2015, J. Comput. Phys..

[25]  Zhi-Zhong Sun,et al.  A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..

[26]  Alan J. Laub,et al.  Matrix analysis - for scientists and engineers , 2004 .

[27]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[28]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[29]  Yuri M. Dimitrov A Second Order Approximation for the Caputo Fractional Derivative , 2015, 1502.00719.

[30]  Harish Sankaranarayanan,et al.  Higher order Grünwald approximations of fractional derivatives and fractional powers of operators , 2014 .

[31]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[32]  Yu-xin Zhang,et al.  Improved matrix transform method for the Riesz space fractional reaction dispersion equation , 2014, J. Comput. Appl. Math..

[33]  I. Turner,et al.  A novel numerical approximation for the space fractional advection-dispersion equation , 2014 .

[34]  Benito M. Chen-Charpentier,et al.  Analysis and Models in Interdisciplinary Mathematics , 2014 .

[35]  Changpin Li,et al.  High-Order Algorithms for Riesz Derivative and their Applications (III) , 2016 .

[36]  C. Lubich Discretized fractional calculus , 1986 .

[37]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[38]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[39]  Changpin Li,et al.  High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II) , 2015 .