Structure and mechanical properties of Fe–Ni–Zr oxide-dispersion-strengthened (ODS) alloys

[1]  Zi-kui Liu,et al.  Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys , 2015, Scientific Reports.

[2]  Q. Nie,et al.  CORRIGENDUM: DNA methylome in spleen of avian pathogenic escherichia coli-challenged broilers and integration with mRNA expression , 2015, Scientific Reports.

[3]  G. R. Odette,et al.  Recent Progress in Developing and Qualifying Nanostructured Ferritic Alloys for Advanced Fission and Fusion Applications , 2014 .

[4]  R. Scattergood,et al.  Size effect of primary Y2O3 additions on the characteristics of the nanostructured ferritic ODS alloys: Comparing as-milled and as-milled/annealed alloys using S/TEM , 2014 .

[5]  J. Kim,et al.  Effect of milling temperature on nanoclusters and ultra fine grained microstructure of oxide dispersion strengthened steel , 2014 .

[6]  C. Parish,et al.  Response of nanostructured ferritic alloys to high-dose heavy ion irradiation ☆ , 2014 .

[7]  Yong-Bok Lee,et al.  Effects of Partial Phase Transformation on Characteristics of 9Cr Nanostructured Ferritic Alloy , 2014 .

[8]  T. Fujisawa,et al.  TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition , 2014 .

[9]  C. Parish,et al.  Advanced oxide dispersion strengthened and nanostructured ferritic alloys , 2013 .

[10]  R. Scattergood,et al.  Thermal stability and mechanical properties of nanocrystalline Fe–Ni–Zr alloys prepared by mechanical alloying , 2013, Journal of Materials Science.

[11]  D. Fabrègue,et al.  High-Temperature Tensile Properties of Nano-Oxide Dispersion Strengthened Ferritic Steels Produced by Mechanical Alloying and Spark Plasma Sintering , 2013, Metallurgical and Materials Transactions A.

[12]  R. Scattergood,et al.  Effect of zirconium on grain growth and mechanical properties of a ball-milled nanocrystalline FeNi alloy , 2013 .

[13]  J. Kim,et al.  Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I—Mechanical and microstructural observations , 2013 .

[14]  R. Scattergood,et al.  An in situ experimental study of grain growth in a nanocrystalline Fe91Ni8Zr1 alloy , 2013, Journal of Materials Science.

[15]  Mark A. Atwater,et al.  The thermal stability of nanocrystalline copper cryogenically milled with tungsten , 2012 .

[16]  K. Oh,et al.  Thermal stability of oxide particles in 12Cr ODS steel , 2012 .

[17]  L. Kovarik,et al.  Morphology, structure, and chemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel , 2012, Journal of Materials Science.

[18]  A Hirata,et al.  Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. , 2011, Nature materials.

[19]  Y. Zhang,et al.  Fabrication and characterization of APT specimens from high dose heavy ion irradiated materials. , 2011, Ultramicroscopy.

[20]  F. Willaime,et al.  Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance , 2010 .

[21]  J. Kuntz,et al.  HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance , 2009 .

[22]  D. Hoelzer,et al.  Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT , 2009 .

[23]  N. Baluc,et al.  On the lattice coherency of oxide particles dispersed in EUROFER97 , 2009 .

[24]  Y. Carlan,et al.  Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy , 2009 .

[25]  A. Peigney,et al.  Tetragonal-(Zr,Co)O2 solid solution: Combustion synthesis, thermal stability in air and reduction in H2, H2–CH4 and H2–C2H4 atmospheres , 2008 .

[26]  F. C. Campbell Elements of Metallurgy and Engineering Alloys , 2008 .

[27]  R. Scattergood,et al.  Grain-size stabilization in nanocrystalline FeZr alloys , 2008 .

[28]  Brian D. Wirth,et al.  Recent Developments in Irradiation-Resistant Steels , 2008 .

[29]  M. Mills,et al.  Creep response and deformation processes in nanocluster-strengthened ferritic steels , 2008 .

[30]  Mikhail A. Sokolov,et al.  Influence of Particle Dispersions on the High-Temperature Strength of Ferritic Alloys , 2007 .

[31]  M. A. Monge,et al.  Mechanical and microstructural behaviour of Y2O3 ODS EUROFER 97 , 2007 .

[32]  O. S. Es-Said,et al.  Effects of Heat Treatments on Steels for Bearing Applications , 2007 .

[33]  K. F. Russell,et al.  Characterization of precipitates in MA/ODS ferritic alloys , 2006 .

[34]  A. Möslang,et al.  Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels. , 2005, Micron.

[35]  G. Spinolo,et al.  Zirconia‐Based Metastable Solid Solutions through Self‐Propagating High‐Temperature Synthesis: Synthesis, Characterization, and Mechanistic Investigations , 2004 .

[36]  I. Monnet,et al.  Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels , 2004 .

[37]  C. Suryanarayana,et al.  Mechanical alloying and milling , 2004 .

[38]  K. F. Russell,et al.  Nanometer scale precipitation in ferritic MA/ODS alloy MA957 , 2004 .

[39]  G. Odette,et al.  TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys , 2004 .

[40]  S. Ohnuki,et al.  Formation of nanoscale complex oxide particles in mechanically alloyed ferritic steel , 2004 .

[41]  K. T. Ramesh,et al.  Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation , 2004 .

[42]  A. Möslang,et al.  HRTEM study of yttrium oxide particles in ODS steels for fusion reactor application , 2003 .

[43]  Shigeharu Ukai,et al.  Perspective of ODS alloys application in nuclear environments , 2002 .

[44]  T. Okuda,et al.  Development of 9Cr-ODS Martensitic Steel Claddings for Fuel Pins by means of Ferrite to Austenite Phase Transformation , 2002 .

[45]  R. Haubner,et al.  Boron Nitrides — Properties, Synthesis and Applications , 2002 .

[46]  T. Langdon,et al.  Review: Processing of metals by equal-channel angular pressing , 2001 .

[47]  Dieter Isheim,et al.  Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram , 2000, Microscopy and Microanalysis.

[48]  A. Bostel,et al.  Trajectory overlaps and local magnification in three-dimensional atom probe , 2000 .

[49]  M. Phaneuf,et al.  Applications of focused ion beam microscopy to materials science specimens , 1999 .

[50]  J. Jiang,et al.  Structure and Thermal Stability of Nanostructured Iron-doped Zirconia Prepared by High-energy Ball Milling , 1999 .

[51]  G. Spinolo,et al.  Fe-Doped Zirconium Oxide Produced by Self-Sustained High-Temperature Synthesis: Evidence for an Fe−Zr Direct Bond , 1999 .

[52]  M. Inoue,et al.  Effects of Grain Morphology and Texture on High Temperature Deformation in Oxide Dispersion Strengthened Ferritic Steels , 1996 .

[53]  V. Sarin,et al.  Oxidation behavior of WC-Co , 1996 .

[54]  C. Koch,et al.  The hall-petch relationship in nanocrystalline iron produced by ball milling , 1990 .

[55]  Mark R. Smith,et al.  Iron-zirconium oxides: An investigation of structural transformations by X-ray diffraction, electron diffraction, and iron-57 Mössbauer spectroscopy , 1989 .

[56]  R. Kershaw,et al.  Preparation and characterization of cubic ZrO2 stabilized by Fe(III) and Fe(II) , 1988 .

[57]  L. Schultz,et al.  Formation and properties of mechanically alloyed amorphous FeZr , 1988 .

[58]  C. Michaelsen,et al.  Mössbauer effect on mechanically alloyed Fe‐Zr glasses , 1987 .

[59]  L. Schultz,et al.  Glass forming ability in mechanically alloyed Fe‐Zr , 1986 .

[60]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .