Magnetopause motion driven by interplanetary magnetic field variations

We use previously reported observations of hot flow anomalies (HFAs) and foreshock cavities to predict the characteristics of corresponding features in the dayside magnetosheath, at the magnetopause, and in the outer dayside magnetosphere. We compare these predictions with Interball 1, Magion 4, and GOES 8/GOES 9 observations of magneto‐pause motion on the dusk flank of the magnetosphere from 1800 UT on January 17 to 0200 UT on January 18, 1996. As the model predicts, strong (factor of 2 or more) density enhancements bound regions of depressed magnetosheath densities and/or outward magnetopause displacements. During the most prominent event, the geosynchronous spacecraft observe an interval of depressed magnetospheric magnetic field strength bounded by two enhancements. Simultaneous Wind observations indicate that the intervals of depressed magnetosheath densities and outward magnetopause displacements correspond to periods in which the east/west (By) component of the interplanetary magnetic field (IMF) decreases to values near zero rather than to variations in the solar wind dynamic pressure, the north/south component of the IMF, or the IMF cone angle.

[1]  David G. Sibeck,et al.  Comprehensive study of the magnetospheric response to a hot flow anomaly , 1999 .

[2]  A. Ridley,et al.  Multi‐instrument analysis of the ionospheric signatures of a hot flow anomaly occurring on July 24, 1996 , 1998 .

[3]  David G. Sibeck,et al.  Oscillations of magnetospheric boundaries driven by IMF rotations , 1998 .

[4]  L. Přech,et al.  Transient flux enhancements in the magnetosheath , 1998 .

[5]  E. Sarris,et al.  The DOK-2 Experiment to Study Energetic Particles by the Tail Probe and Auroral Probe Satellites in the INTERBALL Project , 1998 .

[6]  S. Petrinec,et al.  The effect of foreshock on the motion of the dayside magnetopause , 1997 .

[7]  A. Fedorov,et al.  Ion distribution dynamics near the Earth’s bow shock: first measurements with the 2D ion energy spectrometer CORALL on the INTERBALL/Tail-probe satellite , 1997 .

[8]  L. Přech,et al.  Small scale observation of magnetopause motion: preliminary results of the INTERBALL project , 1997 .

[9]  J. Sauvaud,et al.  Special Topic Interball-1: first scientific results , 1997 .

[10]  Richard Grubb,et al.  Monitoring space weather with the GOES magnetometers , 1996, Optics & Photonics.

[11]  M. Thomsen,et al.  Simulation of upstream pressure pulse propagation through the bow shock , 1995 .

[12]  J. M. Bosqued,et al.  A three-dimensional plasma and energetic particle investigation for the wind spacecraft , 1995 .

[13]  F. Mariani,et al.  The WIND magnetic field investigation , 1995 .

[14]  D. Sibeck Transient events in the outer magnetosphere : boundary waves or flux transfer events ? , 1992 .

[15]  Wolfgang Baumjohann,et al.  Upstream pressure variations associated with the bow shock and their effects on the magnetosphere , 1990 .

[16]  M. Kivelson,et al.  The Magnetohydrodynamic Response of the Magnetospheric Cavity to Changes in Solar Wind Pressure , 1990 .

[17]  C. Rufenach,et al.  A study of geosynchronous magnetopause crossings , 1989 .

[18]  Wolfgang Baumjohann,et al.  The Magnetospheric Response to 8-Minute Period Strong-Amplitude Upstream Pressure Variations , 1989 .

[19]  M. Dunlop,et al.  Active current sheets near the Earth's bow shock , 1988 .

[20]  G. Haerendel,et al.  Three-dimensional plasma structures with anomalous flow directions near the Earth's bow shock , 1988 .

[21]  S. Brecht,et al.  Evolution of diamagnetic cavities in the solar wind , 1988 .

[22]  C. Russell,et al.  Hot, diamagnetic cavities upstream from the Earth's bow shock , 1986 .

[23]  S. Schwartz,et al.  An active current sheet in the solar wind , 1985, Nature.

[24]  M. Kivelson,et al.  Kelvin‐Helmholtz Instability at the magnetopause: Energy flux into the magnetosphere , 1983 .

[25]  G. Wrenn,et al.  Geos-2 magnetopause encounters: Low energy (<500 eV) particle measurements , 1981 .

[26]  T. Hill Rates of mass, momentum, and energy transfer at the magnetopause , 1979 .

[27]  P. Verzariu Reflection and refraction of hydromagnetic waves at the magnetopause , 1973 .

[28]  G. Siscoe,et al.  Magnetopause motions at lunar distance determined from the Explorer 35 Plasma Experiment , 1972 .

[29]  W. Axford Viscous interaction between the solar wind and the earth's magnetosphere , 1964 .