Generalized inexact proximal algorithms : habit ’ s formation with resistance to change , following worthwhile changes

This paper shows how, in a quasi-metric space, an inexact proximal algorithm with a generalized perturbation term appears to be a nice tool for Behavioral Sciences (Psychology, Economics, Management, Game theory,...). More precisely, the new perturbation term represents an index of resistance to change, defined as a “curved enough” function of the quasi-distance between two successive iterates. Using this behavioral point of view, the present paper shows how such a generalized inexact proximal algorithm can modelize the formation of habits and routines in a striking way. This idea comes from a recent “variational rationality approach” of human behavior which links a lot of different theories of stability (habits, routines, equilibrium, traps,...) and changes (creations, innovations, learning and destructions,...) in Behavioral Sciences and a lot of concepts and algorithms in variational analysis.

[1]  B. Verplanken,et al.  Habit, attitude, and planned behaviour : is habit an empty construct or an interesting case of goal-directed automaticity? , 1999 .

[2]  G. C. Bento,et al.  A Proximal Point-Type Method for Multicriteria Optimization , 2014, Set-Valued and Variational Analysis.

[3]  Patrick Redont,et al.  A New Class of Alternating Proximal Minimization Algorithms with Costs-to-Move , 2007, SIAM J. Optim..

[4]  K. Lewin Field theory in social science , 1951 .

[5]  Arthur L. Costa,et al.  Habits of Mind: Preparing Agile Students for the VUCA Age , 2018 .

[6]  M. Solodov,et al.  A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator , 1999 .

[7]  Moussa Larbani,et al.  Two-Person Second-Order Games, Part 1: Formulation and Transition Anatomy , 2009 .

[8]  Po-Lung Yu,et al.  Forming Winning Strategies: An Integrated Theory of Habitual Domains , 1990 .

[9]  Teemu Pennanen,et al.  Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity , 2002, Math. Oper. Res..

[10]  A. Iusem,et al.  Proximal methods in reflexive Banach spaces without monotonicity , 2007 .

[11]  G. C. Bento,et al.  Inexact proximal algorithms in models of Behavioral Sciences , 2014, 1403.7032.

[12]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[13]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[14]  A. Tversky,et al.  Loss Aversion in Riskless Choice: A Reference-Dependent Model , 1991 .

[15]  P. Lally,et al.  How are habits formed: Modelling habit formation in the real world , 2010 .

[16]  R. Rumelt,et al.  Inertia and Transformation , 1995 .

[17]  Kevin M. Murphy,et al.  A Theory of Rational Addiction , 1988, Journal of Political Economy.

[18]  Moussa Larbani,et al.  Decision Making and Optimization in Changeable Spaces, a New Paradigm , 2012, J. Optim. Theory Appl..

[19]  Alexander Kaplan,et al.  Proximal Point Methods and Nonconvex Optimization , 1998, J. Glob. Optim..

[20]  Charles Duhigg,et al.  The Power of Habit: Why We Do What We Do, and How to Change , 2012 .

[21]  Alfredo N. Iusem,et al.  Inexact Variants of the Proximal Point Algorithm without Monotonicity , 2002, SIAM J. Optim..

[22]  Mohammed Abdellaoui,et al.  Loss Aversion Under Prospect Theory: A Parameter-Free Measurement , 2007, Manag. Sci..

[23]  A. Soubeyran,et al.  Knowledge Accumulation within an Organization , 2014 .

[24]  B. Verplanken,et al.  Interventions to Break and Create Consumer Habits , 2006 .

[25]  H. Aarts,et al.  THE AUTOMATIC ACTIVATION OF GOAL-DIRECTED BEHAVIOUR: THE CASE OF TRAVEL HABIT , 2000 .

[26]  C. Carroll Solving consumption models with multiplicative habits , 2000 .

[27]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[28]  K. Kurdyka,et al.  Proof of the gradient conjecture of R. Thom , 1999, math/9906212.

[29]  M. Fukushima,et al.  A generalized proximal point algorithm for certain non-convex minimization problems , 1981 .

[30]  K. Kurdyka On gradients of functions definable in o-minimal structures , 1998 .

[31]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[32]  J. Bolte,et al.  Characterizations of Lojasiewicz inequalities: Subgradient flows, talweg, convexity , 2009 .

[33]  B. Gardner Habit as automaticity, not frequency , 2012 .

[34]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[35]  David T. Neal,et al.  A new look at habits and the habit-goal interface. , 2007, Psychological review.

[36]  M. Kremer,et al.  The O-Ring Theory of Economic Development , 1993 .

[37]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[39]  Adrian S. Lewis,et al.  Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..

[40]  Antoine Soubeyran,et al.  A proximal algorithm with quasi distance. Application to habit's formation , 2012 .

[41]  J. Bargh The four horsemen of automaticity: Awareness, intention, efficiency, and control in social cognition. , 1994 .

[42]  Peter P. Wakker,et al.  An index of loss aversion , 2005, J. Econ. Theory.

[43]  Do Habits Raise Consumption Growth? , 2003 .

[44]  David T. Neal,et al.  Habits—A Repeat Performance , 2006 .

[45]  I. Ajzen The theory of planned behavior , 1991 .

[46]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[47]  M. Larbani,et al.  n-Person Second-Order Games: A Paradigm Shift in Game Theory , 2011, J. Optim. Theory Appl..

[48]  Andrew B. Abel,et al.  Asset Prices Under Habit Formation and Catching Up with the Joneses , 1990 .

[49]  G. C. Bento,et al.  A Generalized Inexact Proximal Point Method for Nonsmooth Functions that Satisfies Kurdyka Lojasiewicz Inequality , 2015 .

[50]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[51]  G. C. Bento,et al.  Behavioral Traps and the Equilibrium Problem on Hadamard Manifolds , 2013, 1307.7200.

[52]  Po-Lung Yu,et al.  Dynamic MCDM, Habitual Domains and Competence Set Analysis for Effective Decision Making in Changeable Spaces , 2010, Trends in Multiple Criteria Decision Analysis.

[53]  A. Zaslavski Inexact Proximal Point Methods in Metric Spaces , 2011 .

[54]  Robert S. Wyer,et al.  The Four Horsemen of Automaticity: Awareness, Intention, Efficiency, and Control in Social Cognition , 2014 .

[55]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[56]  L. Dries,et al.  Geometric categories and o-minimal structures , 1996 .

[57]  Markus C. Becker Organizational routines: a review of the literature , 2004 .

[58]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[59]  Patrick L. Combettes,et al.  Proximal Methods for Cohypomonotone Operators , 2004, SIAM J. Control. Optim..

[60]  Dinh The Luc,et al.  Maximal Elements Under Reference-Dependent Preferences with Applications to Behavioral Traps and Games , 2012, Journal of Optimization Theory and Applications.

[61]  Antoine Soubeyran,et al.  Learning how to Play Nash, Potential Games and Alternating Minimization Method for Structured Nonconvex Problems on Riemannian Manifolds , 2013 .

[62]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[63]  H. Attouch,et al.  Local Search Proximal Algorithms as Decision Dynamics with Costs to Move , 2011 .

[64]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[65]  G. C. Bento,et al.  Convergence of inexact descent methods for nonconvex optimization on Riemannian manifolds , 2011 .

[66]  B. Verplanken,et al.  Reflections on past behavior: A self-report index of habit strength , 2003 .

[67]  J. Spingarn Submonotone mappings and the proximal point algorithm , 1982 .