Characterization of noncoding regulatory DNA in the human genome

Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

[1]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[2]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[3]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[4]  J. Kinney,et al.  Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence , 2010, Proceedings of the National Academy of Sciences.

[5]  Jong-il Kim,et al.  Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells , 2015, Nature Methods.

[6]  P. Giresi,et al.  Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA , 2012, Nature Protocols.

[7]  Hunter B. Fraser,et al.  Pooled ChIP-Seq Links Variation in Transcription Factor Binding to Complex Disease Risk , 2016, Cell.

[8]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[9]  R. Guigó,et al.  Transcriptome genetics using second generation sequencing in a Caucasian population , 2010, Nature.

[10]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[11]  J. Shendure,et al.  Systematic Dissection of Coding Exons at Single Nucleotide Resolution Supports an Additional Role in Cell-Specific Transcriptional Regulation , 2014, PLoS genetics.

[12]  W. D. Laat,et al.  A Decade of 3c Technologies: Insights into Nuclear Organization References , 2022 .

[13]  Z. Yakhini,et al.  Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters , 2012, Nature Biotechnology.

[14]  Kevin Y. Yip,et al.  Understanding transcriptional regulation by integrative analysis of transcription factor binding data , 2012, Genome research.

[15]  Jay Shendure,et al.  High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis , 2009, Nature Biotechnology.

[16]  D. W. Knowles,et al.  Transcription Factors Bind Thousands of Active and Inactive Regions in the Drosophila Blastoderm , 2008, PLoS biology.

[17]  M. Haeussler,et al.  Genome Editing with CRISPR-Cas9: Can It Get Any Better? , 2016, Journal of genetics and genomics = Yi chuan xue bao.

[18]  Stephen C. J. Parker,et al.  Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants , 2013, Proceedings of the National Academy of Sciences.

[19]  Timothy E. Reddy,et al.  Effects of sequence variation on differential allelic transcription factor occupancy and gene expression , 2012, Genome research.

[20]  Sharon R Grossman,et al.  Systematic mapping of functional enhancer–promoter connections with CRISPR interference , 2016, Science.

[21]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[22]  Qingyang Huang,et al.  Genetic study of complex diseases in the post-GWAS era. , 2015, Journal of genetics and genomics = Yi chuan xue bao.

[23]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[24]  E. Dermitzakis,et al.  Candidate Causal Regulatory Effects by Integration of Expression QTLs with Complex Trait Genetic Associations , 2010, PLoS genetics.

[25]  E. Lander,et al.  Development and Applications of CRISPR-Cas 9 for Genome Engineering , 2015 .

[26]  A. Dean,et al.  Enhancer function: mechanistic and genome-wide insights come together. , 2014, Molecular cell.

[27]  Erin L. Doyle,et al.  Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting , 2011, Nucleic acids research.

[28]  William Stafford Noble,et al.  Integrative annotation of chromatin elements from ENCODE data , 2012, Nucleic acids research.

[29]  Francis S Collins,et al.  A HapMap harvest of insights into the genetics of common disease. , 2008, The Journal of clinical investigation.

[30]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[31]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[32]  Martin J. Aryee,et al.  Engineered CRISPR-Cas9 nucleases with altered PAM specificities , 2015, Nature.

[33]  Dariusz M Plewczynski,et al.  CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription , 2015, Cell.

[34]  Neville E. Sanjana,et al.  High-resolution interrogation of functional elements in the noncoding genome , 2016, Science.

[35]  Alessandro Romanel,et al.  ASEQ: fast allele-specific studies from next-generation sequencing data , 2015, BMC Medical Genomics.

[36]  Łukasz M. Boryń,et al.  Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq , 2013, Science.

[37]  C. Danko,et al.  Enhancer transcripts mark active estrogen receptor binding sites , 2013, Genome research.

[38]  V. Iyer,et al.  FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. , 2007, Genome research.

[39]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[40]  Matthew D. Edwards,et al.  High-throughput mapping of regulatory DNA , 2016, Nature Biotechnology.

[41]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[42]  E. Birney,et al.  Heritable Individual-Specific and Allele-Specific Chromatin Signatures in Humans , 2010, Science.

[43]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[44]  Daniel A. Skelly,et al.  A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. , 2011, Genome research.

[45]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[46]  C. N. Stewart,et al.  Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. , 2014, Plant biotechnology journal.

[47]  Łukasz M. Boryń,et al.  STARR-seq - principles and applications. , 2015, Genomics.

[48]  Alexander van Oudenaarden,et al.  Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins , 2013, Proceedings of the National Academy of Sciences.

[49]  B. Cohen,et al.  Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChIP-seq peaks , 2013, Proceedings of the National Academy of Sciences.

[50]  Joseph K. Pickrell,et al.  Understanding mechanisms underlying human gene expression variation with RNA sequencing , 2010, Nature.

[51]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[52]  J. Joung,et al.  Locus-specific editing of histone modifications at endogenous enhancers using programmable TALE-LSD1 fusions , 2013, Nature Biotechnology.

[53]  Jonathan K. Pritchard,et al.  Identification of Genetic Variants That Affect Histone Modifications in Human Cells , 2013, Science.

[54]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[55]  M. Olivier A haplotype map of the human genome , 2003, Nature.

[56]  A. Ashworth,et al.  Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C , 2014, Genome research.

[57]  C. Glass,et al.  Reprogramming Transcription via Distinct Classes of Enhancers Functionally Defined by eRNA , 2011, Nature.

[58]  Matthew C. Canver,et al.  BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis , 2015, Nature.

[59]  T. Mikkelsen,et al.  Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. , 2013, Genome research.

[60]  M. Mhlanga,et al.  Chromosomal Contact Permits Transcription between Coregulated Genes , 2013, Cell.

[61]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[62]  Lan T M Dao,et al.  High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq , 2015, Nature Communications.

[63]  M. McCarthy,et al.  Genome-wide association studies for complex traits: consensus, uncertainty and challenges , 2008, Nature Reviews Genetics.

[64]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[65]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[66]  J. Kawai,et al.  Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[68]  J. Joung,et al.  Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition , 2015, Nature Biotechnology.

[69]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[70]  Teri A. Manolio,et al.  Bringing genome-wide association findings into clinical use , 2013, Nature Reviews Genetics.

[71]  Olle Melander,et al.  From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus , 2010, Nature.

[72]  Yang Shi,et al.  Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1 , 2004, Cell.

[73]  R. Elkon,et al.  eRNAs are required for p53-dependent enhancer activity and gene transcription. , 2013, Molecular cell.

[74]  J. Andrau,et al.  Initiating RNA Polymerase II and TIPs as hallmarks of enhancer activity and tissue-specificity , 2011, Transcription.

[75]  B. Cohen,et al.  High-throughput functional testing of ENCODE segmentation predictions , 2014, Genome research.

[76]  J. Steitz,et al.  The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones , 2014, Cell.

[77]  A. Stark,et al.  Transcriptional enhancers: from properties to genome-wide predictions , 2014, Nature Reviews Genetics.

[78]  J. Lindberg,et al.  Gene regulatory mechanisms underpinning prostate cancer susceptibility , 2016, Nature Genetics.

[79]  John G Flannery,et al.  Massively parallel cis-regulatory analysis in the mammalian central nervous system , 2016, Genome research.

[80]  M. Gerstein,et al.  AlleleSeq: analysis of allele-specific expression and binding in a network framework , 2011, Molecular systems biology.

[81]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[82]  Z. Szallasi,et al.  CAUSEL: An epigenome and genome editing pipeline for establishing function of non-coding GWAS variants , 2015, Nature Medicine.

[83]  M. Gerstein,et al.  Variation in Transcription Factor Binding Among Humans , 2010, Science.

[84]  J. Shendure,et al.  Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model , 2013, Nature Genetics.

[85]  A. Jeltsch,et al.  Epigenome Editing: State of the Art, Concepts, and Perspectives. , 2016, Trends in genetics : TIG.

[86]  R. Agami,et al.  eRNAs reach the heart of transcription , 2013, Cell Research.

[87]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[88]  Orli G. Bahcall Human genetics: GTEx pilot quantifies eQTL variation across tissues and individuals , 2015, Nature Reviews Genetics.

[89]  Elo Leung,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[90]  C. Barbas,et al.  ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. , 2013, Trends in biotechnology.

[91]  Shawn M. Gillespie,et al.  Insulator dysfunction and oncogene activation in IDH mutant gliomas , 2015, Nature.

[92]  G. Church,et al.  Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. , 2011, Nature biotechnology.

[93]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[94]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[95]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[96]  Antonia A. Dominguez,et al.  Transcriptional regulation of hepatic lipogenesis , 2015, Nature Reviews Molecular Cell Biology.

[97]  Michael Q. Zhang,et al.  Combinatorial patterns of histone acetylations and methylations in the human genome , 2008, Nature Genetics.

[98]  C. Glass,et al.  Epigenomics: Roadmap for regulation , 2015, Nature.

[99]  L. Mirny,et al.  Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data , 2013, Nature Reviews Genetics.

[100]  B. Turner,et al.  Defining an epigenetic code , 2007, Nature Cell Biology.

[101]  M. Olivier A haplotype map of the human genome. , 2003, Nature.

[102]  Piero Carninci,et al.  Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line , 2015, Front. Genet..

[103]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[104]  H. Kim,et al.  A guide to genome engineering with programmable nucleases , 2014, Nature Reviews Genetics.

[105]  Shiyou Zhu,et al.  High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells , 2014, Nature.

[106]  Leighton J. Core,et al.  Coordinated Effects of Sequence Variation on DNA Binding, Chromatin Structure, and Transcription , 2013, Science.

[107]  G. Kreiman,et al.  Widespread transcription at neuronal activity-regulated enhancers , 2010, Nature.

[108]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[109]  Keji Zhao,et al.  Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. , 2005, Genes & development.

[110]  G. Crawford,et al.  DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. , 2010, Cold Spring Harbor protocols.

[111]  Reuven Agami,et al.  Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA , 2015, Nature Communications.

[112]  D. Schübeler,et al.  Determinants and dynamics of genome accessibility , 2011, Nature Reviews Genetics.

[113]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[114]  William Stafford Noble,et al.  Unsupervised pattern discovery in human chromatin structure through genomic segmentation , 2012, Nature Methods.

[115]  Stephanie L. Hyland,et al.  Identification of active transcriptional regulatory elements with GRO-seq , 2015, Nature Methods.

[116]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[117]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[118]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[119]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[120]  Daniel S. Day,et al.  Activation of proto-oncogenes by disruption of chromosome neighborhoods , 2015, Science.

[121]  Xiaoquan Wen,et al.  QuASAR: Quantitative Allele Specific Analysis of Reads , 2014, bioRxiv.

[122]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[123]  Yonatan Stelzer,et al.  Parkinson-associated risk variant in enhancer element produces subtle effect on target gene expression , 2016, Nature.

[124]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[125]  Judith B. Zaugg,et al.  Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions , 2015, Cell.

[126]  Donghai Wu,et al.  Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers , 2014, Nucleic acids research.

[127]  W. Sung,et al.  Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations , 2013, Nature.

[128]  Jonathan K. Pritchard,et al.  WASP: allele-specific software for robust molecular quantitative trait locus discovery , 2015, Nature Methods.

[129]  Qingqing Huang,et al.  EnhancerDB: a resource of transcriptional regulation in the context of enhancers , 2019, Database.

[130]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[131]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[132]  R. Jiao,et al.  TALEN or Cas9 - rapid, efficient and specific choices for genome modifications. , 2013, Journal of genetics and genomics = Yi chuan xue bao.

[133]  R. Maehr,et al.  Functional annotation of native enhancers with a Cas9 -histone demethylase fusion , 2015, Nature Methods.

[134]  R. Elkon,et al.  Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9 , 2016, Nature Biotechnology.

[135]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[136]  M. Gut,et al.  Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters , 2011, Nature Structural &Molecular Biology.

[137]  M. Rosenfeld,et al.  Enhancers as non-coding RNA transcription units: recent insights and future perspectives , 2016, Nature Reviews Genetics.

[138]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[139]  Scott A. Rifkin,et al.  Revealing the architecture of gene regulation: the promise of eQTL studies. , 2008, Trends in genetics : TIG.

[140]  Christopher M. Vockley,et al.  Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers , 2015, Nature Biotechnology.

[141]  Timothy E. Reddy,et al.  Highly Specific Epigenome Editing by CRISPR/Cas9 Repressors for Silencing of Distal Regulatory Elements , 2015, Nature Methods.

[142]  N. Cox,et al.  Obesity-associated variants within FTO form long-range functional connections with IRX3 , 2014, Nature.

[143]  Niko Välimäki,et al.  CTCF/cohesin-binding sites are frequently mutated in cancer , 2015, Nature Genetics.

[144]  Philip A. Ewels,et al.  Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C , 2015, Nature Genetics.

[145]  Leighton J. Core,et al.  A Rapid, Extensive, and Transient Transcriptional Response to Estrogen Signaling in Breast Cancer Cells , 2011, Cell.

[146]  James B. Brown,et al.  DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[147]  J. Keith Joung,et al.  Interactome Maps of Mouse Gene Regulatory Domains Reveal Basic Principles of Transcriptional Regulation , 2013, Cell.

[148]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[149]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[150]  J. Costello,et al.  Cancer: Oncogene brought into the loop , 2015, Nature.

[151]  N. Ahituv,et al.  Decoding enhancers using massively parallel reporter assays. , 2015, Genomics.

[152]  Michael Q. Zhang,et al.  CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function , 2015, Cell.

[153]  Joseph B Hiatt,et al.  Massively parallel functional dissection of mammalian enhancers in vivo , 2012, Nature Biotechnology.

[154]  B. Deplancke,et al.  The Genetics of Transcription Factor DNA Binding Variation , 2016, Cell.

[155]  Jeffry D Sander,et al.  Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins , 2013, Nature Biotechnology.

[156]  B. Erman,et al.  Long noncoding RNA (lincRNA), a new paradigm in gene expression control , 2016, Functional & Integrative Genomics.

[157]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[158]  M. Daly,et al.  Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). , 2005, Genome research.

[159]  R. Andrews,et al.  Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression , 2014, Science.

[160]  Chun Jimmie Ye,et al.  A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks , 2015, Cell.

[161]  Joseph K. Pickrell,et al.  DNaseI sensitivity QTLs are a major determinant of human expression variation , 2011, Nature.

[162]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[163]  Swneke D. Bailey,et al.  Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.

[164]  Wei Zhang,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.

[165]  S. Batzoglou,et al.  Linking disease associations with regulatory information in the human genome , 2012, Genome research.

[166]  Axel Visel,et al.  Tissue-Specific RNA Expression Marks Distant-Acting Developmental Enhancers , 2014, PLoS genetics.

[167]  Kimberly R. Kukurba,et al.  Systematic functional regulatory assessment of disease-associated variants , 2013, Proceedings of the National Academy of Sciences.

[168]  Ronald D. Vale,et al.  A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging , 2014, Cell.

[169]  C. Glass,et al.  Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation , 2013, Nature.

[170]  W. Sung,et al.  ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing , 2010, Genome Biology.