Enhanced structural and tribological performance of nanostructured Ti–15Nb alloy for biomedical applications

[1]  S. Weiss,et al.  Preliminary investigation on the bio-tribocorrosion behavior of porous nanostructured β-type titanium based biomedical alloys , 2019 .

[2]  M. Bououdina,et al.  Microstructural, Magnetic, and Nanoindentation Studies of the Ball-Milled Ti80Ni20 Alloy , 2019, Journal of Superconductivity and Novel Magnetism.

[3]  S. Weiss,et al.  Effect of Molybdenum Content on Structural, Mechanical, and Tribological Properties of Hot Isostatically Pressed β-Type Titanium Alloys for Orthopedic Applications , 2019, Journal of Materials Engineering and Performance.

[4]  Jinyuan Tang,et al.  Tribological behavior of coated spur gear pairs with tooth surface roughness , 2019 .

[5]  M. Fellah,et al.  Synthesis and structural and mechanical properties of nanobioceramic (α-Al2O3) , 2019, Journal of the Australian Ceramic Society.

[6]  S. Weiss,et al.  Biotribocorrosion behaviour of newly developed nanostructured near β-types Titanium based Alloys for Biomedical Applications , 2019 .

[7]  M. Samad,et al.  The Effect of Milling Time on Structural, Friction and Wear Behavior of Hot Isostatically Pressed Ti–Ni Alloys for Orthopedic Applications , 2019, TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings.

[8]  Mythili Prakasam,et al.  Effect of calcination temperature on friction and wear behavior of α –alumina ( α ‐Al 2 O 3 ) for biomedical applications , 2018, International Journal of Applied Ceramic Technology.

[9]  M. Samad,et al.  Effect of Zr content on friction and wear behavior of Cr‐Zr‐N coating system , 2018 .

[10]  A. Iost,et al.  Comportement à l’usure et au frottement de deux biomatériaux AISI 316L et Ti-6Al-7Nb pour prothèse totale de hanche , 2018 .

[11]  Alain Iost,et al.  Effect of Replacing Vanadium by Niobium and Iron on the Tribological Behavior of HIPed Titanium Alloys , 2017, Acta Metallurgica Sinica (English Letters).

[12]  Pushkar P. Jha,et al.  Friction and wear behavior of Cu–4 wt.%Ni–TiC composites under dry sliding conditions , 2017, Friction.

[13]  Xiaohong Li,et al.  Tailoring Microstructure and Tribological Properties of Cold Deformed TiZrAlV Alloy by Thermal Treatment , 2017, Acta Metallurgica Sinica (English Letters).

[14]  Rui Yang,et al.  Effect of Hot Isostatic Pressing Loading Route on Microstructure and Mechanical Properties of Powder Metallurgy Ti2AlNb Alloys , 2017 .

[15]  J. Tan,et al.  Characterizations on Mechanical Properties and In Vitro Bioactivity of Biomedical Ti–Nb–Zr–CPP Composites Fabricated by Spark Plasma Sintering , 2016, Acta Metallurgica Sinica (English Letters).

[16]  Daoxin Liu,et al.  A Comparison Study of Wear and Fretting Fatigue Behavior Between Cr-alloyed Layer and Cr–Ti Solid-solution Layer , 2016, Acta Metallurgica Sinica (English Letters).

[17]  R. Hu,et al.  Effect of Nb Content on Solidification Characteristics and Microsegregation in Cast Ti–48Al–xNb Alloys , 2016, Acta Metallurgica Sinica (English Letters).

[18]  Alain Iost,et al.  Sliding friction and wear performance of the nano-bioceramic α-Al2O3 prepared by high energy milling , 2015 .

[19]  S. Gong,et al.  Using Finite Element and Contour Method to Evaluate Residual Stress in Thick Ti-6Al-4V Alloy Welded by Electron Beam Welding , 2015, Acta Metallurgica Sinica (English Letters).

[20]  Yuyong Chen,et al.  Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti–Mo alloys , 2015 .

[21]  M. Mohammed,et al.  Effect of thermo-mechanical processing on microstructure and electrochemical behavior of Ti–Nb–Zr–V new metastable β titanium biomedical alloy , 2015 .

[22]  Alain Iost,et al.  Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis , 2014 .

[23]  A. Iost,et al.  Comparative Study on Tribological Behavior of Ti-6Al-7Nb and SS AISI 316L Alloys, for Total Hip Prosthesis , 2014 .

[24]  A. Iost,et al.  Tribological behaviour of AISI 316L stainless steel for biomedical applications , 2013 .

[25]  A. Iost,et al.  Friction and Wear Behavior of Ti-6Al-7Nb Biomaterial Alloy , 2013 .

[26]  Yuyong Chen,et al.  Microstructure, mechanical properties and dry wear resistance of β-type Ti–15Mo–xNb alloys for biomedical applications , 2013 .

[27]  M. Niinomi,et al.  Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications. , 2012, Acta biomaterialia.

[28]  Yuyong Chen,et al.  Effect of milling time on microstructure of Ti35Nb2.5Sn/10HA biocomposite fabricated by powder metallurgy and sintering , 2012 .

[29]  L. Bolzoni,et al.  Inductive hot-pressing of titanium and titanium alloy powders , 2012 .

[30]  P. Cao,et al.  Mechanical and electrochemical characterization of Ti–12Mo–5Zr alloy for biomedical application , 2011 .

[31]  Z. Hamid,et al.  Investigation of nanostructured and conventional alumina–titania coatings prepared by air plasma spray process , 2010 .

[32]  Yuyong Chen,et al.  Microstructure and dry wear properties of Ti-Nb alloys for dental prostheses , 2009 .

[33]  H. Hosoda,et al.  Self-accommodation in Ti-Nb shape memory alloys , 2009 .

[34]  Jiu-hua Xu,et al.  Surface Integrity and Fatigue Property of a High Speed Milled Titanium Alloy , 2008 .

[35]  F. Kong,et al.  The microstructure and properties of Ti–Mo–Nb alloys for biomedical application , 2008 .

[36]  A. C. Guastaldi,et al.  Electrochemical behavior of Ti–Mo alloys applied as biomaterial , 2008 .

[37]  I. Cretescu,et al.  EFFECT OF VANADIUM REPLACEMENT BY ZIRCONIUM ON THE ELECTROCHEMICAL BEHAVIOR OF Ti6Al4V ALLOY IN RINGER'S SOLUTION , 2008 .

[38]  M. Razavi,et al.  Synthesis of nanocrystalline TiC powder from impure Ti chips via mechanical alloying , 2007 .

[39]  E. Eisenbarth,et al.  Biocompatibility of β-stabilizing elements of titanium alloys , 2004 .

[40]  C. Ju,et al.  Structure and properties of cast binary Ti-Mo alloys. , 1999, Biomaterials.