Updated Measurements of [O iii] 88 μm, [C ii] 158 μm, and Dust Continuum Emission from a z = 7.2 Galaxy

We present updated measurements of the [O iii] 88 μm, [C ii] 158 μm, and dust continuum emission from a star-forming galaxy at z = 7.212, SXDF-NB1006-2, by utilizing Atacama Large Millimeter/submillimeter Array (ALMA) archival data sets analysed in previous studies and data sets that have not been analysed before. The follow-up ALMA observations with higher angular resolution and sensitivity reveal a clumpy structure of the [O iii] emission on a scale of 0.32–0.85 kpc. We also combined all the ALMA [O iii] ([C ii]) data sets and updated the [O iii] ([C ii]) detection to 5.9σ (3.6σ–4.5σ). The non-detection of [C ii] with data from the REBELS large program implies the incompleteness of spectral-scan surveys using [C ii] to detect galaxies with high star formation rates (SFRs) but marginal [C ii] emission at high-z. The dust continuum at 90 and 160 μm remains undetected, indicating little dust content of <3.9 × 106 M ⊙ (3σ), and we obtained a more stringent constraint on the total infrared luminosity. We updated the [O iii]/[C ii] luminosity ratios to 10.2 ± 4.7 (6.1 ± 3.5) and 20 ± 12 (9.6 ± 6.1) for the 4.5σ and 3.6σ [C ii] detections, respectively, where the ratios in the parentheses are corrected for the surface brightness dimming effect on the extended [C ii] emission. We also found a strong [C ii] deficit (0.6–1.3 dex) between SXDF-NB1006-2 and the mean L [C II]−SFR relation of galaxies at 0 < z < 9.

[1]  J. Devriendt,et al.  Two Modes of LyC Escape From Bursty Star Formation: Implications for [C II] Deficits and the Sources of Reionization , 2022, 2210.09156.

[2]  P. P. van der Werf,et al.  Dual constraints with ALMA: new [O iii] 88 μm and dust-continuum observations reveal the ISM conditions of luminous LBGs at z ∼ 7 , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  T. Goto,et al.  ALMA Detections of [O iii] and [C ii] Emission Lines From A1689-zD1 at z = 7.13 , 2022, The Astrophysical Journal.

[4]  W. Vacca,et al.  SOFIA Observations of Far-IR Fine-structure Lines in Galaxies to Measure Metallicity , 2021, The Astrophysical Journal.

[5]  P. P. van der Werf,et al.  Reionization Era Bright Emission Line Survey: Selection and Characterization of Luminous Interstellar Medium Reservoirs in the z > 6.5 Universe , 2021, 2106.13719.

[6]  R. Teyssier,et al.  The Nature of High ${\rm [OIII]}_{\rm 88\mu m}$/${\rm [CII]}_{\rm 158\mu m}$ Galaxies in the Epoch of Reionization: Low Carbon Abundance and a Top-Heavy IMF? , 2021, 2108.01074.

[7]  A. Fontana,et al.  Missing [C ii] emission from early galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[8]  D. Schaerer,et al.  The origin of the escape of Lyman α and ionizing photons in Lyman continuum emitters , 2020, Astronomy & Astrophysics.

[9]  T. Hashimoto,et al.  Radiative equilibrium estimates of dust temperature and mass in high-redshift galaxies , 2020, 2004.12612.

[10]  J. Hodge,et al.  High-redshift star formation in the ALMA era , 2020, 2004.00934.

[11]  O. Fèvre,et al.  The ALPINE-ALMA [C II] survey , 2020, Astronomy & Astrophysics.

[12]  S. Khochfar,et al.  Starbursting [O iii] emitters and quiescent [C ii] emitters in the reionization era , 2020, 2001.01853.

[13]  T. Nagao,et al.  Large Population of ALMA Galaxies at z > 6 with Very High [O iii] 88 μm to [C ii] 158 μm Flux Ratios: Evidence of Extremely High Ionization Parameter or PDR Deficit? , 2019, The Astrophysical Journal.

[14]  J. Vieira,et al.  A dense, solar metallicity ISM in the z = 4.2 dusty star-forming galaxy SPT 0418−47 , 2019, Astronomy & Astrophysics.

[15]  K. Mawatari,et al.  The absence of [C ii] 158 $\mu$m emission in spectroscopically confirmed galaxies at z > 8 , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[16]  B. Mobasher,et al.  Resolved UV and [C ii] Structures of Luminous Galaxies within the Epoch of Reionization , 2019, The Astrophysical Journal.

[17]  N. Yoshida,et al.  Detection of the Far-infrared [O iii] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era , 2018, The Astrophysical Journal.

[18]  D. Watson,et al.  Big Three Dragons: A z = 7.15 Lyman-break galaxy detected in [O iii] 88 μm, [C ii] 158 μm, and dust continuum with ALMA , 2018, Publications of the Astronomical Society of Japan.

[19]  R. Pelló,et al.  The onset of star formation 250 million years after the Big Bang , 2018, Nature.

[20]  D. Sobral,et al.  Predicting Lyα escape fractions with a simple observable , 2018, Astronomy & Astrophysics.

[21]  J. Dunlop,et al.  The Dust and [C ii] Morphologies of Redshift ∼4.5 Sub-millimeter Galaxies at ∼200 pc Resolution: The Absence of Large Clumps in the Interstellar Medium at High-redshift , 2018, 1804.03663.

[22]  R. Bouwens,et al.  Rotation in [C ii]-emitting gas in two galaxies at a redshift of 6.8 , 2017, Nature.

[23]  A. Fontana,et al.  Kiloparsec-scale gaseous clumps and star formation at $z=5-7$ , 2017, 1712.03985.

[24]  R. Ellis,et al.  Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy , 2017, 1703.02039.

[25]  A. Fontana,et al.  Extended ionised and clumpy gas in a normal galaxy at z=7.1 revealed by ALMA , 2017, 1701.03468.

[26]  N. Yoshida,et al.  Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch , 2016, Science.

[27]  J. Kneib,et al.  [C II] emission in z ~ 6 strongly lensed, star-forming galaxies , 2016, 1603.02277.

[28]  A. Fontana,et al.  The assembly of ‘normal’ galaxies at z ∼ 7 probed by ALMA , 2015, 1502.06634.

[29]  V. Doublier,et al.  The Herschel Dwarf Galaxy Survey - I. Properties of the low-metallicity ISM from PACS spectroscopy , 2015, 1502.03131.

[30]  M. Dijkstra Lyα Emitting Galaxies as a Probe of Reionisation , 2014, Publications of the Astronomical Society of Australia.

[31]  E. Pellegrini,et al.  The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types , 2014, 1402.4075.

[32]  H. Roussel,et al.  An Overview of the Dwarf Galaxy Survey , 2013, 1305.2628.

[33]  G. Helou,et al.  A Compendium of Far-Infrared Line and Continuum Emission for 227 Galaxies Observed by the Infrared Space Observatory , 2008, 0805.2930.

[34]  T. Onaka,et al.  Global physical conditions of the interstellar medium in nearby galaxies , 2001, astro-ph/0107019.

[35]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.