On flame kernel formation and propagation in premixed gases

[1]  H. Metghalchi,et al.  Flame structure and laminar burning speeds of JP-8/air premixed mixtures at high temperatures and pressures , 2010 .

[2]  F. Halter,et al.  Measurement of laminar burning speeds and Markstein lengths using a novel methodology , 2009 .

[3]  On the location of flame edge in Shadowgraph pictures of spherical flames: a theoretical and experimental study , 2007 .

[4]  A. Konnov,et al.  The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2 , 2007 .

[5]  Y. Ju,et al.  Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame , 2007 .

[6]  F. Halter,et al.  Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures , 2005 .

[7]  Derek Bradley,et al.  Fundamentals of high-energy spark ignition with lasers , 2004 .

[8]  Myung Taeck Lim,et al.  Spark kernel development in constant volume combustion , 2003 .

[9]  Yuji Ikeda,et al.  Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark , 2003 .

[10]  William M. K. Trochim,et al.  Research methods knowledge base , 2001 .

[11]  M. Z. Haq,et al.  Laminar burning velocity and Markstein lengths of methane–air mixtures , 2000 .

[12]  C. Kaminski,et al.  Characterisation of a spark ignition system by planar laser-induced fluorescence of OH at high repetition rates and comparison with chemical kinetic calculations , 2000 .

[13]  Mohamed I. Hassan,et al.  Measured and predicted properties of laminar premixed methane/air flames at various pressures , 1998 .

[14]  P. Gaskell,et al.  Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study , 1996 .

[15]  J. Heywood,et al.  From Spark Ignition to Flame Initiation , 1995 .

[16]  Eran Sher,et al.  Numerical modeling of spark ignition and flame initiation in a quiescent methane-air mixture , 1994 .

[17]  E. Sher,et al.  Laminar burning velocities of n-butane/air mixtures enriched with hydrogen , 1992 .

[18]  John B. Heywood,et al.  A model for flame kernel development in a spark-ignition engine , 1991 .

[19]  Richard W. Anderson,et al.  Spark ignition of propane-air mixtures near the minimum ignition energy: Part I. An experimental study , 1991 .

[20]  Vedat S. Arpaci,et al.  Spark ignition of propane-air mixtures near the minimum ignition energy: Part II. A model development , 1991 .

[21]  Eran Sher,et al.  Spark ignition of combustible gas mixtures , 1986 .

[22]  J. Sunner,et al.  The temporal development of OH-concentration profiles in ignition kernels studied by single-pulse laser induced fluorescence , 1986 .

[23]  R. Maly,et al.  Ignition of lean methane-air mixtures by high pressure glow and ARC discharges , 1985 .

[24]  Eran Sher,et al.  A theoretical study of the ignition of a reactive medium by means of an electrical discharge , 1985 .

[25]  A. H. Lefebvre,et al.  A general model of spark ignition for gaseous and liquid fuel-air mixtures , 1981 .

[26]  R. Maly,et al.  Ignition model for spark discharges and the early phase of flame front growth , 1981 .

[27]  H. Adelman,et al.  A TIME-DEPENDENT THEORY OF SPARK IGNITION , 1981 .

[28]  R. Maly,et al.  Initiation and propagation of flame fronts in lean CH4-air mixtures by the three modes of the ignition spark , 1979 .

[29]  P. W. Schreiber,et al.  Electrical Conductivity and Total Emission Coefficient of Air Plasma , 1973 .

[30]  Sanborn C. Brown,et al.  Basic Data of Plasma Physics , 1961 .

[31]  Suhrmann Elektrische Gasentladungen, ihre Physik und Technik. Von A. v. Engel und M. Steenbeck, 2. Band: Entladungseigenschaften, technische Anwendungen; 352 S. und 250 Textabbildungen. Verlag von J. Springer, Berlin 1932. Preis geh. RM. 32.—, geb. RM. 33,50 , 1935 .

[32]  M. Steenbeck,et al.  Elektrische Gasentladungen : ihre Physik und Technik , 1932 .