Implementation of feedback linearization GPC control for a solar furnace

Abstract In this paper the temperature control of a solar furnace is addressed. In particular, we propose the use of a feedback linearization generalized predictive control strategy where both the reference tracking task and the rejection of disturbances (represented by the variation of the input energy provided by the Sun, mainly because of the solar daily cycle and passing clouds) are considered. This allows the physical and security constraints to be explicitly taken into account in the design. Simulation and experimental results show the effectiveness of the methodology and that this kind of plants can be considered as a cheap or alternative option for the material treatment and testing in the industrial context.

[1]  K R Williams,et al.  Power from the sun , 1979 .

[2]  José Domingo Álvarez,et al.  Repetitive control of tubular heat exchangers , 2007 .

[3]  J.M. Lemos,et al.  Adaptive Receding Horizon Control of a Distributed Collector Solar Field , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[4]  Manuel Berenguel,et al.  Control Strategies for Disturbance Rejection in a Solar Furnace , 2011 .

[5]  João M. Lemos,et al.  Cascade control of a distributed collector solar field , 1997 .

[6]  Manuel Berenguel,et al.  Solar Energy Fundamentals , 2012 .

[7]  Manuel Berenguel,et al.  Feedback linearization control for a distributed solar collector field , 2005 .

[8]  Marcelino Sánchez,et al.  PSA Solar furnace: A facility for testing PV cells under concentrated solar radiation , 2006 .

[9]  R. Balluffi,et al.  The mechanism of sintering of copper , 1957 .

[10]  K. Warwick,et al.  Adaptive general predictive controller for nonlinear systems , 1991 .

[11]  José Luis Guzmán,et al.  Robust constrained predictive feedback linearization controller in a solar desalination plant collector field , 2009 .

[12]  Manuel Berenguel,et al.  Constrained Temperature Control of a Solar Furnace , 2012, IEEE Transactions on Control Systems Technology.

[13]  M. Berenguel,et al.  Solar field control for desalination plants , 2008 .

[14]  Alain Ferriere,et al.  Solar Processing of Materials: Opportunities and New Frontiers , 1999 .

[15]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[16]  M. Berenguel,et al.  Application of generalized predictive control to a solar power plant , 1994, 1994 Proceedings of IEEE International Conference on Control and Applications.

[17]  Michael J. Kurtz,et al.  Input-output linearizing control of constrained nonlinear processes , 1997 .

[18]  Eduardo F. Camacho,et al.  Temperature control of a solar furnace , 1999 .

[19]  F. Trombe,et al.  Solar furnaces and their applications , 1957 .

[20]  Peter E. Glaser A solar furnace for use in applied research , 1957 .

[21]  João M. Lemos,et al.  Reduced complexity adaptive nonlinear control of a distributed collector solar field , 2002 .

[22]  M. Berenguel,et al.  Copper sintering in a solar furnace through fuzzy control , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[23]  José Luis Guzmán,et al.  A feedback linearization GPC control strategy for a solar furnace , 2012, 2012 American Control Conference (ACC).

[24]  E. Guillot,et al.  An adaptive temperature control law for a solar furnace , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[25]  Ton J.J. van den Boom,et al.  Predictive control based on neural network models with I/O feedback linearization , 1999 .

[26]  Manuel Berenguel,et al.  Control of Solar Energy Systems , 2012 .