Threefold exTTF-based Buckycatcher

Charge-transfer complex formation by a tuning-fork shaped π-extended tetrathiafulvalene-based molecule, which acts as molecular catcher for C60 in a variety of solvents upon photoexcitation, has been explored. An increase in 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole unit creates an easy-chair like conformation accommodating C60, which leads to a binding constant and lifetime of radical ion pair state of 2.23 × 104 (mol L−1)−1 and 4.8 ps in ortho-dichlorobenzene.

[1]  E. Ortí,et al.  A bis-exTTF macrocyclic receptor that associates C60 with micromolar affinity. , 2010, Journal of the American Chemical Society.

[2]  T. Moore,et al.  Solar fuels via artificial photosynthesis. , 2009, Accounts of chemical research.

[3]  D. Schuster,et al.  Synthesis, conformational interconversion, and photophysics of tethered porphyrin-fullerene dyads with parachute topology. , 2009, Chemistry.

[4]  Jean Roncali,et al.  Molecular bulk heterojunctions: an emerging approach to organic solar cells. , 2009, Accounts of chemical research.

[5]  Deqing Zhang,et al.  Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes. , 2009, Chemical communications.

[6]  M. Herranz,et al.  Supramolecular chemistry of π-extended analogues of TTF and carbon nanostructures , 2009 .

[7]  E. Ortí,et al.  Discrete supramolecular donor-acceptor complexes. , 2009, Angewandte Chemie.

[8]  N. Martín,et al.  Curves ahead: molecular receptors for fullerenes based on concave-convex complementarity. , 2008, Chemical Society reviews.

[9]  L. Sánchez,et al.  An electroactive dynamically polydisperse supramolecular dendrimer. , 2008, Journal of the American Chemical Society.

[10]  L. Sánchez,et al.  Self-organization of electroactive materials: a head-to-tail donor-acceptor supramolecular polymer. , 2008, Angewandte Chemie.

[11]  A. Voityuk,et al.  Buckycatcher. A New Opportunity for Charge-Transfer Mediation? , 2008 .

[12]  D. Guldi,et al.  Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials? , 2007, Accounts of chemical research.

[13]  A. Sygula,et al.  A double concave hydrocarbon buckycatcher. , 2007, Journal of the American Chemical Society.

[14]  E. Ortí,et al.  Concave tetrathiafulvalene-type donors as supramolecular partners for fullerenes. , 2007, Angewandte Chemie.

[15]  J. Orduna,et al.  Through-space communication in a TTF–C60–TTF triad , 2007 .

[16]  L. Sánchez,et al.  exTTF as a building block for fullerene receptors. unexpected solvent-dependent positive homotropic cooperativity. , 2006, Journal of the American Chemical Society.

[17]  C. Rovira Bis(ethylenethio)tetrathiafulvalene (BET-TTF) and related dissymmetrical electron donors: from the molecule to functional molecular materials and devices (OFETs). , 2004, Chemical reviews.

[18]  T. Inabe,et al.  Phthalocyanines-versatile components of molecular conductors. , 2004, Chemical reviews.

[19]  M. Harmata,et al.  Chiral molecular tweezers. , 2004, Accounts of chemical research.

[20]  O. Ito,et al.  Photophysical Study of New Methanofullerene−TTF Dyads: An Obvious Intramolecular Charge Transfer in the Ground States , 2004 .

[21]  D. Guldi,et al.  Thermally reversible C60-based donor-acceptor ensembles. , 2002, Chemical communications.

[22]  J. Zhao,et al.  A (pi-extended tetrathiafulvalene)-fluorene conjugate. Unusual electrochemistry and charge transfer properties: the first observation of a covalent D(2+)-sigma-A(.-) redox state(1). , 2002, Journal of the American Chemical Society.

[23]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[24]  D. Guldi,et al.  Formation and Characterization of the π-Radical Cation and Dication of π-Extended Tetrathiafulvalene Materials , 2001 .

[25]  Emma R. Schofield,et al.  RUII-POLYPYRIDINE COMPLEXES COVALENTLY LINKED TO ELECTRON ACCEPTORS AS WIRES FOR LIGHT-DRIVEN PSEUDOROTAXANE-TYPE MOLECULAR MACHINES , 1998 .

[26]  L. Sánchez,et al.  C(60)-Based Electroactive Organofullerenes. , 1998, Chemical reviews.

[27]  Vincenzo Balzani,et al.  A LIGHT-FUELED PISTON CYLINDER MOLECULAR-LEVEL MACHINE , 1998 .

[28]  M. Ward Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies , 1998 .

[29]  M. Therien,et al.  Direct evaluation of electronic coupling mediated by hydrogen bonds: implications for biological electron transfer , 1995, Science.

[30]  M. Bryce,et al.  SYNTHESIS AND MULTISTAGE REDOX PROPERTIES OF 9,10-BIS(1,3-DITHIOL-2-YLIDENE)-9,10-DIHYDROANTHRACENE DERIVATIVES FUNCTIONALIZED WITH FERROCENYL AND TET RATHIAFULVALENYL UNITS , 1994 .

[31]  T. Sera,et al.  Controlled Electron Transfer between Cyclodextrin-Sandwiched Porphyrin and Quinones , 1993 .

[32]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[33]  H. Schneider,et al.  Frontiers in Supramolecular Organic Chemistry and Photochemistry , 1991 .

[34]  D. Waldeck,et al.  Hydrogen-Bonding Self-Assembly of Multichromophore Structures , 1990 .

[35]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[36]  H. Whitlock,et al.  Concave functionality: design criteria for nonaqueous binding sites , 1990 .

[37]  R. Forster,et al.  Interfacial supramolecular assemblies , 2003 .

[38]  A. Russo,et al.  Zinc(II) driven intra-molecular electronic energy transfer in a supramolecular assembly held by coordinative interactions , 2001 .

[39]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[40]  A. Maciejewski,et al.  The photophysics, physical photochemistry, and related spectroscopy of thiocarbonyls , 1993 .