Libraries, Tools, and Interactive Systems for Verified Computations Four Case Studies

As interval analysis-based reliable computations find wider application, more software is becoming available. Simultaneously, the applications for which this software is designed are becoming more diverse. Because of this, the software itself takes diverse forms, ranging from libraries for application development to fully interactive systems. The target applications range from fairly general to specialized.

[1]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[2]  R. Baker Kearfott,et al.  Interval extensions of non-smooth functions for global optimization and nonlinear systems solvers , 1996, Computing.

[3]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[4]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[5]  Siegfried M. Rump,et al.  Fast verification of solutions of matrix equations , 2002, Numerische Mathematik.

[6]  R. Baker Kearfott,et al.  The cluster problem in multivariate global optimization , 1994, J. Glob. Optim..

[7]  Jorge J. Moré,et al.  User Guide for Minpack-1 , 1980 .

[8]  R. Baker Kearfott,et al.  On proving existence of feasible points in equality constrained optimization problems , 1998, Math. Program..

[9]  Christian Jansson,et al.  Rigorous Lower and Upper Bounds in Linear Programming , 2003, SIAM J. Optim..

[10]  Ralph Baker Kearfott,et al.  An Iterative Method for Finding Approximate Feasible Points , 2000 .

[11]  R. Baker Kearfott,et al.  GlobSol: History, Composition, and Advice on Use , 2002, COCOS.

[12]  A. Neumaier,et al.  Interval Slopes for Rational Functions and Associated Centered Forms , 1985 .

[13]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[14]  M. Neher Improved validated bounds for Taylor coefficients and for Taylor remainder series , 2003 .

[15]  R. Baker Kearfott,et al.  Algorithm 681: INTBIS, a portable interval Newton/bisection package , 1990, TOMS.

[16]  Jean Vignes,et al.  A stochastic arithmetic for reliable scientific computation , 1993 .

[17]  Markus Neher Validated Bounds for Taylor Coefficients of Analytic Functions , 2001 .

[18]  G. Corliss,et al.  C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .

[19]  Shin'ichi Oishi,et al.  Fast enclosure of matrix eigenvalues and singular values via rounding mode controlled computation , 2001 .

[20]  Kaisheng Du,et al.  The Cluster Problem in Global Optimization: the Univariate Case , 1993 .

[21]  R. Baker Kearfott,et al.  An interval branch and bound algorithm for bound constrained optimization problems , 1992, J. Glob. Optim..

[22]  V. F. Dem'yanov,et al.  Nondifferentiable Optimization , 1985 .

[23]  Tetsuya Sakurai,et al.  On Factorization of Analytic Functions and Its Verification , 2000, Reliab. Comput..

[24]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[25]  Hermann Schichl,et al.  Exclusion Regions for Systems of Equations , 2004, SIAM J. Numer. Anal..

[26]  Markus Neher,et al.  Geometric Series Bounds for the Local errors of Taylor Methods for Linear n-th-Order ODEs , 2001, Symbolic Algebraic Methods and Verification Methods.

[27]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[28]  A. Neumaier Interval methods for systems of equations , 1990 .

[29]  R. Baker Kearfott,et al.  Decomposition of arithmetic expressions to improve the behavior of interval iteration for nonlinear systems , 1991, Computing.

[30]  Willard L. Miranker,et al.  A new approach to scientific computation , 1983 .

[31]  Markus Neher,et al.  Validated Bounds for Taylor Coefficients of Analytic Functions , 2001, TOMS.

[32]  Ulrich W. Kulisch Advanced Arithmetic for the Digital Computer , 2002 .

[33]  R. Baker Kearfott,et al.  Treating Non-Smooth Functions as Smooth Functions in Global Optimization and Nonlinear Systems Solvers , 2000 .

[34]  Willard L. Miranker,et al.  Computer arithmetic in theory and practice , 1981, Computer science and applied mathematics.