A data centre air flow model for predicting computer server inlet temperatures

Data centres account for approx. 1.3% of the world's electricity consumption, of which up to 50% of that power is dedicated to keeping the actual equipment cool. This represents a huge opportunity to reduce data centre energy consumption by tackling the cooling system operations with a focus on thermal management. This work presents a novel Data Centre Air Flow Model (DCAM) for temperature prediction of server inlet temperatures. The model is a physics-based model under-pinned by turbulent jet theory allowing a reduction in the solution domain size by using only local boundary conditions in front of the servers. Current physics-based modeling approaches require a solution domain of the entire data centre room which is expensive in terms of computation even if a small change occurs in a localized area. By limiting the solution domain and boundary conditions to a local level, the model focuses on the airflow mixing that affects temperatures while also simplifying the related computations. The DCAM model does not have the usual complexities of numerical computations, dependencies on computational grid size, meshing or the need to solve a full domain solution. The input boundary conditions required for the model can be supplied by the Building Management System (BMS), Power Distribution Units (PDU), sensors, or output from other modeling environments that only need updating when significant changes occur. Preliminary results validated on a real world data centre yield an overall prediction error of 1.2° C RMSE. The model can perform in real-time, giving way to applications for real-time monitoring, as input to optimize control of air conditioning units, and can complement sensor networks.

[1]  M. M. Toulouse,et al.  Evaluation of a vortex model of buoyancy-driven recirculation in potential flow analysis of data center performance , 2012, 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[2]  Paul Linden,et al.  The fluid dynamics of an underfloor air distribution system , 2006, Journal of Fluid Mechanics.

[3]  Julian C. R. Hunt,et al.  Environmental fluid mechanics , 1980 .

[4]  Yogendra Joshi,et al.  Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers , 2010 .

[5]  Roger R. Schmidt,et al.  Improved CFD modeling of a small data center test cell , 2010, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[6]  Maurice L. Albertson,et al.  Diffusion of Submerged Jets , 1948 .

[7]  M. Schappert,et al.  Methods and techniques for measuring and improving data center best practices , 2008, 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[8]  William K. George,et al.  Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet , 1994, Journal of Fluid Mechanics.

[9]  W. Marsden I and J , 2012 .

[10]  Van P. Carey,et al.  Exploration of a Potential-Flow-Based Compact Model of Air-Flow Transport in Data Centers , 2009 .

[11]  Hazim B. Awbi,et al.  Air movement in naturally-ventilated buildings , 1996 .

[12]  Madhusudan K. Iyengar,et al.  Reduced Order Thermal Modeling of Data Centers via Distributed Sensor Data , 2009 .

[13]  Paul Cooper,et al.  Multiple sources of buoyancy in a naturally ventilated enclosure , 1996 .

[14]  David Joseph Lettieri Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method , 2012 .

[15]  Israel J Wygnanski,et al.  Some measurements in the self-preserving jet , 1969, Journal of Fluid Mechanics.

[16]  Hendrik F. Hamann,et al.  Measurement-based modeling for data centers , 2010, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[17]  Hendrik F. Hamann,et al.  Thermal zones for more efficient data center energy management , 2010, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[18]  Christopher M. Healey,et al.  Data Center Airflow Prediction With an Enhanced Potential Flow Model , 2013 .

[19]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .