Shaping Covalent Triazine Frameworks for the Hydrogenation of Carbon Dioxide to Formic Acid

A facile one‐step method to shape covalent triazine frameworks (CTFs) for catalytic applications is reported. Phase inversion of the CTF powder by using a polyimide as a binder in a microfluidic device results in the formation of composite spheres with accessible CTF porosity and a high mechanical and thermal stability. The fabricated spheres can be used to host organometallic complexes. The obtained shaped catalysts, Ir@CTF spheres, are active and fully recyclable in the direct hydrogenation of carbon dioxide into formic acid under mild reaction conditions (20 bar and 50–90 °C) and in the dehydrogenation of formic acid.

[1]  Ling Wu,et al.  Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water. , 2015, Macromolecular rapid communications.

[2]  Sungho Yoon,et al.  A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate. , 2015, ChemSusChem.

[3]  Qi‐Lin Zhou,et al.  Highly efficient hydrogenation of carbon dioxide to formate catalyzed by iridium(iii) complexes of imine–diphosphine ligands , 2015, Chemical science.

[4]  F. Kapteijn,et al.  Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst. , 2015, ChemSusChem.

[5]  R. Palkovits,et al.  Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts. , 2015, ChemSusChem.

[6]  F. Liang,et al.  Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation. , 2015, ChemSusChem.

[7]  Weiguo Song,et al.  A covalent triazine framework as an efficient catalyst for photodegradation of methylene blue under visible light illumination , 2014 .

[8]  L. Bergström,et al.  Structuring adsorbents and catalysts by processing of porous powders , 2014 .

[9]  Chang Won Yoon,et al.  Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride , 2014 .

[10]  P. Dyson,et al.  Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media , 2014, Nature Communications.

[11]  E. Hensen,et al.  Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP‐Pincer Catalyst , 2014 .

[12]  Yu Han,et al.  A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture , 2013 .

[13]  Kaixue Wang,et al.  Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst. , 2013, Angewandte Chemie.

[14]  P. Dyson,et al.  Heterogeneous Silica‐Supported Ruthenium Phosphine Catalysts for Selective Formic Acid Decomposition , 2013 .

[15]  P. Webley,et al.  One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption , 2013, Colloid and Polymer Science.

[16]  William F. Schneider,et al.  Catalytic Hydrogenation of CO2 to Formic Acid with Silica‐Tethered Iridium Catalysts , 2013 .

[17]  Q. Jiang,et al.  An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature. , 2013, Angewandte Chemie.

[18]  Arne Thomas,et al.  Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene , 2013 .

[19]  Shouheng Sun,et al.  Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. , 2013, Angewandte Chemie.

[20]  J. Cole,et al.  Rhodium nitrosyl catalysts for CO2 hydrogenation to formic acid under mild conditions , 2012 .

[21]  Arne Thomas,et al.  Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. , 2012, ChemSusChem.

[22]  Etsuko Fujita,et al.  Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures , 2012, Nature Chemistry.

[23]  F. Gärtner,et al.  Kohlenstoffdioxid‐neutrale Wasserstoffspeicherung basierend auf Bicarbonaten und Formiaten , 2011 .

[24]  M. Beller,et al.  CO2-"neutral" hydrogen storage based on bicarbonates and formates. , 2011, Angewandte Chemie.

[25]  Shengping Wang,et al.  Hydrogenation of CO2 to formic acid on supported ruthenium catalysts , 2011 .

[26]  A. Villa,et al.  Triazine-based polymers as nanostructured supports for the liquid-phase oxidation of alcohols. , 2011, Chemistry.

[27]  S. Basu,et al.  Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations , 2010 .

[28]  F. Schüth,et al.  Feste Katalysatoren für die selektive Niedertemperaturoxidation von Methan zu Methanol , 2009 .

[29]  M. Antonietti,et al.  Solid catalysts for the selective low-temperature oxidation of methane to methanol. , 2009, Angewandte Chemie.

[30]  Arne Thomas,et al.  Ionothermalsynthese von porösen kovalenten Triazin‐ Polymernetzwerken , 2008 .

[31]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[32]  Xiaoming Zheng,et al.  Silica immobilized ruthenium catalyst used for carbon dioxide hydrogenation to formic acid (I): the effect of functionalizing group and additive on the catalyst performance , 2004 .

[33]  Gábor Papp,et al.  Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes , 2003 .

[34]  A. Baiker Utilization of carbon dioxide in heterogeneous catalytic synthesis , 2000 .

[35]  W. Leitner,et al.  Hydrogenation of carbon dioxide to formic acid using water-soluble rhodium catalyststs , 1993 .