On the identification of systems from data measurements using ARMA lattice models

Methods for the autoregressive moving average (ARMA) modeling of digital systems using a two-channel autoregressive (AR) lattice are presented. One method has the advantage that one-half of the lattice parameters are zero when the system's excitation signal is white noise.

[1]  B. Porat The use of prior information in normalized lattice algorithms , 1982 .

[2]  M. Shensa,et al.  Recursive lattice filters - A brief overview , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[3]  M. Morf,et al.  Spectral Estimation , 2006 .

[4]  M. Honig Convergence models for lattice joint process estimators and least squares algorithms , 1983 .

[5]  Benjamin Friedlander,et al.  Instrumental variable methods for ARMA spectral estimation , 1982, ICASSP.

[6]  Benjamin Friedlander,et al.  Square-root covariance ladder algorithms , 1981, ICASSP.

[7]  B. Porat Pure time updates for least squares lattice algorithms , 1983 .

[8]  Francis Anthony Perry Parametric modeling of linear and nonlinear systems. , 1980 .

[9]  M. Morf,et al.  Recursive least squares ladder estimation algorithms , 1981 .

[10]  Benjamin Friedlander Recursive lattice forms for spectral estimation , 1982 .

[11]  S. Parker,et al.  A discrete ARMA model for nonlinear system identification , 1981 .

[12]  M. Morf,et al.  A classification of algorithms for ARMA models and ladder realizations , 1977 .

[13]  Albert Benveniste,et al.  AR and ARMA identification algorithms of Levinson type: An innovations approach , 1981 .

[14]  V. Wertz,et al.  A D-step predictor in lattice and ladder form , 1983 .

[15]  T. Kailath,et al.  Normalized lattice algorithms for least-squares FIR system identification , 1983 .

[16]  S. Parker,et al.  On the synthesis of lattice parameter digital filters , 1984 .

[17]  M. Morf,et al.  Recursive ladder algorithms for ARMA modeling , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[18]  M. Morf,et al.  Square root covariance ladder algorithms , 1982 .

[19]  M. Shensa,et al.  Recursive least squares lattice algorithms--A geometrical approach , 1981 .

[20]  C. Therrien Relations between 2-D and multichannel linear prediction , 1981 .

[21]  B. Friedlander Instrumental variable methods for ARMA spectral estimation , 1983 .

[22]  Martin Morf,et al.  Efficient construction of canonical ladder forms for vector autoregressive processes , 1982 .