Intelligent Systems to Autonomously Classify Several Arrhythmia Using Information from ECG
暂无分享,去创建一个
Héctor Pomares | Ignacio Rojas | Luis Javier Herrera | Olga Valenzuela | Oresti Baños | Francisco M. Ortuño Guzman | Gonzalo Ruiz | Fernando J. Rojas | H. Tribak | O. Baños | H. Pomares | I. Rojas | O. Valenzuela | L. Herrera | F. Rojas | Gonzalo Ruiz | Hind Tribak
[1] Chris H. Q. Ding,et al. Minimum redundancy feature selection from microarray gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.
[2] A. Murray,et al. Comparison of four techniques for recognition of ventricular fibrillation from the surface ECG , 1993, Medical and Biological Engineering and Computing.
[3] A. Kraskov,et al. Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[5] Dan Boneh,et al. On genetic algorithms , 1995, COLT '95.
[6] Charles N. Mead,et al. Frequency domain characterization of artifact and tachyarrhythmias in the surface electrocardiogram , 1990, [1990] Proceedings Computers in Cardiology.
[7] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[8] Elif Derya Übeyli,et al. ECG beat classifier designed by combined neural network model , 2005, Pattern Recognit..
[9] R. Povinelli,et al. Integrative technique for the determination of QT interval , 2006, 2006 Computers in Cardiology.
[10] Fuhui Long,et al. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[11] Y. Censor. Pareto optimality in multiobjective problems , 1977 .
[12] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[13] G. Schmidt,et al. Heart rate turbulence. , 2003, Journal of electrocardiology.
[14] Anil K. Jain,et al. Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[15] A. Bayés de Luna,et al. Tratado de electrocardiografía clínica , 1988 .
[16] Jacek M. Zurada,et al. Normalized Mutual Information Feature Selection , 2009, IEEE Transactions on Neural Networks.
[17] Abraham Lempel,et al. On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.
[18] Willis J. Tompkins,et al. Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database , 1986, IEEE Transactions on Biomedical Engineering.
[19] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[20] H. Hotelling. Analysis of a complex of statistical variables into principal components. , 1933 .
[21] Wade G. Holcomb,et al. Principles of Applied Biomedical Instrumentation , 1969, The Yale Journal of Biology and Medicine.
[22] Willis J. Tompkins,et al. Biomedical Digital Signal Processing , 1993 .
[23] J. Webster,et al. The origin of skin-stretch-caused motion artifacts under electrodes. , 1996, Physiological measurement.
[24] Alberto Maria Segre,et al. Programs for Machine Learning , 1994 .
[25] Carlos A. Coello Coello,et al. Evolutionary Multiobjective Optimization: Current and Future Challenges , 2003 .
[26] M. A. Reyna-Carranza,et al. Análisis Multi-Wavelet para la detección de conductividad ventricular anormal en señales ECG de alta resolución. , 2001 .
[27] R. R. Pérez. Manual de diagnóstico y terapéutica médica en atención primaria. 3a Ed. , 1989 .
[28] James E. Baker,et al. Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.
[29] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[30] Gary B. Lamont,et al. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .
[31] Kalyanmoy Deb,et al. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.
[32] K. Dejong,et al. An analysis of the behavior of a class of genetic adaptive systems , 1975 .
[33] Alfonso Alzate Gómez,et al. CLASIFICACIÓN DE ARRITMIAS UTILIZANDO ANFIS, REDES NEURONALES Y AGRUPAMIENTO SUBSTRACTIVO. , 2006 .
[34] Jeffrey M. Hausdorff,et al. Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .
[35] Roberto Battiti,et al. Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.
[36] V. Vapnik,et al. Bounds on Error Expectation for Support Vector Machines , 2000, Neural Computation.
[37] John R. Koza,et al. Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.
[38] Goldberg,et al. Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.
[39] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[40] Harold Hotelling,et al. Simplified calculation of principal components , 1936 .
[41] H. Koch,et al. The PhysioNet/Computers in Cardiology Challenge 2006: QT interval measurement , 2006, 2006 Computers in Cardiology.
[42] S M Pincus,et al. Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[43] Monson H. Hayes,et al. Statistical Digital Signal Processing and Modeling , 1996 .
[44] B. B. Gorbunov,et al. Comparison of the Efficacy and Noise Immunity of Algorithms for Recognition of Shockable Cardiac Rhythms , 2004 .
[45] Darrell Whitley,et al. A genetic algorithm tutorial , 1994, Statistics and Computing.
[46] Karl Pearson F.R.S.. LIII. On lines and planes of closest fit to systems of points in space , 1901 .
[47] A. Amann,et al. Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators , 2005, Biomedical engineering online.
[48] Edgar David Monroy Jordan,et al. Máquinas de soporte vectorial (SVM) , 2005 .
[49] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[50] Kaisa Miettinen,et al. Some Methods for Nonlinear Multi-objective Optimization , 2001, EMO.
[51] R.F. Santopietro. The origin and characterization of the primary signal, noise, and interference sources in the high frequency electrocardiogram , 1977, Proceedings of the IEEE.
[52] Jorge Crichigno,et al. Comparación de algoritmos evolutivos multi-objetivos en un ambiente multicast , 2004 .
[53] Alexander Kraskov,et al. Least-dependent-component analysis based on mutual information. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[54] Seungjin Choi,et al. Independent Component Analysis , 2009, Handbook of Natural Computing.
[55] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .