Intelligent Systems to Autonomously Classify Several Arrhythmia Using Information from ECG

This paper is focused on the development of intelligent classifiers in the area of biomedicine, focusing on the problem of diagnosing cardiac diseases based on the electrocardiogram (ECG), or more precisely, on the differentiation of several arrhythmia using a large data set, by an autonomous intelligent system which can be used as an expert system to support human experts in the diagnosis and, moreover, to autonomously display an alarm to the user in case of a dangerous situation. We will study and imitate the ECG treatment methodologies and the features extracted from the electrocardiograms used by the researchers, which obtained the best results in the PhysioNet Challenge. We will extract a great amount of features, partly those used by these researchers and some additional others we considered to be important for the distinction previously mentioned. A new method based on different paradigms of intelligent computation (such as extreme learning machine, support vector machine and feature selection) will be used to select the most relevant characteristics and to obtain a classifier capable of autonomously distinguishing the different types arrhythmia from the ECG signal. Finally, the behavior and performance of the classifier have been tested using data from several cardiac pathologies, obtaining good classification results.

[1]  Chris H. Q. Ding,et al.  Minimum redundancy feature selection from microarray gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[2]  A. Murray,et al.  Comparison of four techniques for recognition of ventricular fibrillation from the surface ECG , 1993, Medical and Biological Engineering and Computing.

[3]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[5]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[6]  Charles N. Mead,et al.  Frequency domain characterization of artifact and tachyarrhythmias in the surface electrocardiogram , 1990, [1990] Proceedings Computers in Cardiology.

[7]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[8]  Elif Derya Übeyli,et al.  ECG beat classifier designed by combined neural network model , 2005, Pattern Recognit..

[9]  R. Povinelli,et al.  Integrative technique for the determination of QT interval , 2006, 2006 Computers in Cardiology.

[10]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Y. Censor Pareto optimality in multiobjective problems , 1977 .

[12]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[13]  G. Schmidt,et al.  Heart rate turbulence. , 2003, Journal of electrocardiology.

[14]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  A. Bayés de Luna,et al.  Tratado de electrocardiografía clínica , 1988 .

[16]  Jacek M. Zurada,et al.  Normalized Mutual Information Feature Selection , 2009, IEEE Transactions on Neural Networks.

[17]  Abraham Lempel,et al.  On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.

[18]  Willis J. Tompkins,et al.  Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database , 1986, IEEE Transactions on Biomedical Engineering.

[19]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[20]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[21]  Wade G. Holcomb,et al.  Principles of Applied Biomedical Instrumentation , 1969, The Yale Journal of Biology and Medicine.

[22]  Willis J. Tompkins,et al.  Biomedical Digital Signal Processing , 1993 .

[23]  J. Webster,et al.  The origin of skin-stretch-caused motion artifacts under electrodes. , 1996, Physiological measurement.

[24]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[25]  Carlos A. Coello Coello,et al.  Evolutionary Multiobjective Optimization: Current and Future Challenges , 2003 .

[26]  M. A. Reyna-Carranza,et al.  Análisis Multi-Wavelet para la detección de conductividad ventricular anormal en señales ECG de alta resolución. , 2001 .

[27]  R. R. Pérez Manual de diagnóstico y terapéutica médica en atención primaria. 3a Ed. , 1989 .

[28]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[29]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[30]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[31]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[32]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[33]  Alfonso Alzate Gómez,et al.  CLASIFICACIÓN DE ARRITMIAS UTILIZANDO ANFIS, REDES NEURONALES Y AGRUPAMIENTO SUBSTRACTIVO. , 2006 .

[34]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[35]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[36]  V. Vapnik,et al.  Bounds on Error Expectation for Support Vector Machines , 2000, Neural Computation.

[37]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[38]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[39]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[40]  Harold Hotelling,et al.  Simplified calculation of principal components , 1936 .

[41]  H. Koch,et al.  The PhysioNet/Computers in Cardiology Challenge 2006: QT interval measurement , 2006, 2006 Computers in Cardiology.

[42]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[44]  B. B. Gorbunov,et al.  Comparison of the Efficacy and Noise Immunity of Algorithms for Recognition of Shockable Cardiac Rhythms , 2004 .

[45]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[46]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[47]  A. Amann,et al.  Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators , 2005, Biomedical engineering online.

[48]  Edgar David Monroy Jordan,et al.  Máquinas de soporte vectorial (SVM) , 2005 .

[49]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[50]  Kaisa Miettinen,et al.  Some Methods for Nonlinear Multi-objective Optimization , 2001, EMO.

[51]  R.F. Santopietro The origin and characterization of the primary signal, noise, and interference sources in the high frequency electrocardiogram , 1977, Proceedings of the IEEE.

[52]  Jorge Crichigno,et al.  Comparación de algoritmos evolutivos multi-objetivos en un ambiente multicast , 2004 .

[53]  Alexander Kraskov,et al.  Least-dependent-component analysis based on mutual information. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[55]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .