On simulation output analysis for generalized semi-markov processes
暂无分享,去创建一个
[1] Richard W. Conway,et al. Some Tactical Problems in Digital Simulation , 1963 .
[2] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[3] W. Winkler. D. König u. a. Verallgemeinerungen der Erlangschen und Engsetschen Formeln. (Schriftenreihe d. Inst. f. Math. b. d. DAdW Heft 5). 123 S. m. 1 Abb. Berlin 1967. Akademie-Verlag. Preis brosch. 28,70 M , 1969 .
[4] D. Brillinger. Estimation of the mean of a stationary time series by sampling , 1973, Journal of Applied Probability.
[5] Michael A. Crane,et al. Simulating Stable Stochastic Systems: III. Regenerative Processes and Discrete-Event Simulations , 1975, Oper. Res..
[6] P. Billingsley,et al. Probability and Measure , 1980 .
[7] Ward Whitt,et al. Continuity of Generalized Semi-Markov Processes , 1980, Math. Oper. Res..
[8] Bruce W. Schmeiser,et al. Batch Size Effects in the Analysis of Simulation Output , 1982, Oper. Res..
[9] P. Glynn,et al. Simulation output analysis for general state space Markov chains , 1982 .
[10] Lee W. Schruben,et al. Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..
[11] D. Iglehart,et al. Simulation of Non-Markovian Systems , 1983, IBM J. Res. Dev..
[12] Peter J. Haas,et al. Regenerative Simulation Methods for Local Area Computer Networks , 1985, IBM J. Res. Dev..
[13] G. S. Shedler,et al. Regeneration and Networks of Queues , 1986 .
[14] Peter J. Haas,et al. Recurrence and regeneration in non-markovian networks of queues , 1987 .
[15] P. Haas,et al. Regenerative generalized semi-markov processes , 1987 .
[16] P. Glynn,et al. Estimating time averages via randomly-spaced observations , 1987 .
[17] Ward Whitt,et al. Ordinary CLT and WLLN Versions of L = λW , 1988, Math. Oper. Res..
[18] Sلأren Asmussen,et al. Applied Probability and Queues , 1989 .
[19] Donald L. Iglehart,et al. Simulation methods for queues: An overview , 1988, Queueing Syst. Theory Appl..
[20] Ward Whitt,et al. An LIL Version of L = λW , 1988, Math. Oper. Res..
[21] P. Haas,et al. Stochastic petri nets with timed and immediate transitions , 1989 .
[22] P. Glynn. A Lyapunov Bound for Solutions of Poisson's Equation , 1989 .
[23] P. Glynn. A GSMP formalism for discrete event systems , 1989, Proc. IEEE.
[24] Donald L. Iglehart,et al. Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..
[25] L. Schruben,et al. Properties of standardized time series weighted area variance estimators , 1990 .
[26] R. Durrett. Probability: Theory and Examples , 1993 .
[27] David Goldsman,et al. Spaced batch means , 1991, Oper. Res. Lett..
[28] Gerald S. Shedler. Regenerative Stochastic Simulation , 1992 .
[29] A. Mandelbaum,et al. Regenerative closed queueing networks , 1992 .
[30] A. A. Borovkov,et al. STOCHASTICALLY RECURSIVE SEQUENCES AND THEIR GENERALIZATIONS , 1992 .
[31] S. Meyn,et al. Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.
[32] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[33] P. Glynn,et al. Notes: Conditions for the Applicability of the Regenerative Method , 1993 .
[34] S. Meyn,et al. Stability of Markovian processes II: continuous-time processes and sampled chains , 1993, Advances in Applied Probability.
[35] P. Glynn. Some topics in regenerative steady-state simulation , 1994 .
[36] Sean P. Meyn,et al. A Liapounov bound for solutions of the Poisson equation , 1996 .