Compositional Imprints in Density–Distance–Time: A Rocky Composition for Close-in Low-mass Exoplanets from the Location of the Valley of Evaporation

We use an end-to-end model of planet formation, thermodynamic evolution, and atmospheric escape to investigate how the statistical imprints of evaporation depend on the bulk composition of planetary cores (rocky vs. icy). We find that the population-wide imprints like the location of the "evaporation valley" in the distance-radius plane and the corresponding bimodal radius distribution clearly differ depending on the bulk composition of the cores. Comparison with the observed position of the valley (Fulton et al. 2017) suggests that close-in low-mass Kepler planets have a predominately Earth-like rocky composition. Combined with the excess of period ratios outside of MMR, this suggests that low-mass Kepler planets formed inside of the water iceline, but still undergoing orbital migration. The core radius becomes visible for planets losing all primordial H/He. For planets in this "triangle of evaporation" in the distance-radius plane, the degeneracy in compositions is reduced. In the observed diagram, we identify a trend to more volatile-rich compositions with increasing radius (R/R_Earth 3: H/He). The mass-density diagram contains important information about formation and evolution. Its characteristic broken V-shape reveals the transitions from solid planets to low-mass core-dominated planets with H/He and finally to gas-dominated giants. Evaporation causes density and orbital distance to be anti-correlated for low-mass planets, in contrast to giants, where closer-in planets are less dense, likely due to inflation. The temporal evolution of the statistical properties reported here will be of interest for the PLATO 2.0 mission which will observe the temporal dimension.

[1]  E. Chiang,et al.  MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND , 2014, 1409.3578.

[2]  D. Catling,et al.  AN ANALYTIC RADIATIVE–CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES , 2012, 1209.1833.

[3]  H. De Sterck,et al.  Transonic Hydrodynamic Escape of Hydrogen from Extrasolar Planetary Atmospheres , 2005 .

[4]  E. Lopez Born dry in the photoevaporation desert: Kepler's ultra-short-period planets formed water-poor , 2016, 1610.01170.

[5]  Erik Petigura,et al.  An asteroseismic view of the radius valley: stripped cores, not born rocky , 2017, Monthly Notices of the Royal Astronomical Society.

[6]  Masahiro Ikoma,et al.  Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity , 2000 .

[7]  F. Fressin,et al.  CHARACTERISTICS OF KEPLER PLANETARY CANDIDATES BASED ON THE FIRST DATA SET , 2010, 1006.2799.

[8]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[9]  M. Alvarez,et al.  UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS , 2015, 1504.07170.

[10]  Jonathan Fortney,et al.  Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.

[11]  D. Lin,et al.  TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VI. DYNAMICAL INTERACTION AND COAGULATION OF MULTIPLE ROCKY EMBRYOS AND SUPER-EARTH SYSTEMS AROUND SOLAR-TYPE STARS , 2010, 1006.2584.

[12]  Willy Benz,et al.  Extrasolar planet population synthesis I: Method, formation tracks and mass-distance distribution , 2009, 0904.2524.

[13]  K. Heng,et al.  On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi‐analytical temperature–pressure profiles , 2011, 1107.1390.

[14]  Tsevi Mazeh,et al.  Dearth of short-period Neptunian exoplanets - a desert in period-mass and period-radius planes , 2016, 1602.07843.

[15]  J. Leconte,et al.  The radius anomaly in the planet/brown dwarf overlapping mass regime. , 2010, 1011.0336.

[16]  James E. Owen,et al.  The Evaporation Valley in the Kepler Planets , 2017, 1705.10810.

[17]  J. Owen,et al.  Planetary evaporation by UV and X‐ray radiation: basic hydrodynamics , 2012, 1206.2367.

[18]  O. Grasset,et al.  A STUDY OF THE ACCURACY OF MASS–RADIUS RELATIONSHIPS FOR SILICATE-RICH AND ICE-RICH PLANETS UP TO 100 EARTH MASSES , 2009, 0902.1640.

[19]  Y. Alibert,et al.  Characterization of exoplanets from their formation - I. Models of combined planet formation and evolution , 2012, 1206.6103.

[20]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[21]  Y. Alibert,et al.  Global models of planet formation and evolution , 2014, International Journal of Astrobiology.

[22]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[23]  L. Rogers,et al.  EVOLUTIONARY ANALYSIS OF GASEOUS SUB-NEPTUNE-MASS PLANETS WITH MESA , 2016, 1603.06596.

[24]  Arnold Hanslmeier,et al.  The CoRoT space mission : early results Special feature Determining the mass loss limit for close-in exoplanets : what can we learn from transit observations ? , 2009 .

[25]  G. Laughlin,et al.  The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths , 2012, 1211.1673.

[26]  Gregory Laughlin,et al.  ON THE ANOMALOUS RADII OF THE TRANSITING EXTRASOLAR PLANETS , 2011, 1101.5827.

[27]  P. Bodenheimer,et al.  FORMATION AND STRUCTURE OF LOW-DENSITY EXO-NEPTUNES , 2011, 1106.2807.

[28]  F. Allard,et al.  The effect of evaporation on the evolution of close-in giant planets , 2004, astro-ph/0404101.

[29]  M. Ikoma,et al.  IN SITU ACCRETION OF HYDROGEN-RICH ATMOSPHERES ON SHORT-PERIOD SUPER-EARTHS: IMPLICATIONS FOR THE KEPLER-11 PLANETS , 2012, 1204.5302.

[30]  Roger V. Yelle,et al.  Aeronomy of extra-solar giant planets at small orbital distances , 2003 .

[31]  Xavier Bonfils,et al.  A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b , 2015, Nature.

[32]  S. J. Aarseth,et al.  Origin and Ubiquity of Short-Period Earth-like Planets: Evidence for the Sequential Accretion Theory of Planet Formation , 2005, astro-ph/0508305.

[33]  S. Seager,et al.  A FRAMEWORK FOR QUANTIFYING THE DEGENERACIES OF EXOPLANET INTERIOR COMPOSITIONS , 2009, 0912.3288.

[34]  Drake Deming,et al.  A spectrum of an extrasolar planet , 2007, Nature.

[35]  Christoph Mordasini,et al.  Formation, Orbital and Internal Evolutions of Young Planetary Systems , 2016, 1604.07558.

[36]  J. Fortney,et al.  THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY , 2013, 1305.0269.

[37]  Erik Asphaug,et al.  Mercury and other iron-rich planetary bodies as relics of inefficient accretion , 2014 .

[38]  B. Zuckerman,et al.  ELEMENTAL COMPOSITIONS OF TWO EXTRASOLAR ROCKY PLANETESIMALS , 2014, 1401.4252.

[39]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[40]  James E. Owen,et al.  KEPLER PLANETS: A TALE OF EVAPORATION , 2013, 1303.3899.

[41]  J. Fortney,et al.  UC Office of the President Recent Work Title Bayesian Analysis of Hot-Jupiter Radius Anomalies : Evidence for Ohmic Dissipation ? , 2018 .

[42]  K. Rice,et al.  How formation time-scales affect the period dependence of the transition between rocky super-Earths and gaseous sub-Neptunesand implications for η⊕ , 2016, Monthly Notices of the Royal Astronomical Society.

[43]  C. Baruteau,et al.  A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag , 2009, 0909.4552.

[44]  A. Burrows,et al.  MASS-RADIUS RELATIONS AND CORE-ENVELOPE DECOMPOSITIONS OF SUPER-EARTHS AND SUB-NEPTUNES , 2014, 1402.4818.

[45]  Christoph Mordasini,et al.  PLANETARY POPULATION SYNTHESIS COUPLED WITH ATMOSPHERIC ESCAPE: A STATISTICAL VIEW OF EVAPORATION , 2014, 1409.2879.

[46]  E. Guinan,et al.  Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating , 2003 .

[47]  B. Hansen On the Absorption and Redistribution of Energy in Irradiated Planets , 2008, 0801.2972.

[48]  Migration and the Formation of Systems of Hot Super-Earths and Neptunes , 2006, astro-ph/0609779.

[49]  T. Henning,et al.  Grain opacity and the bulk composition of extrasolar planets - I. Results from scaling the ISM opacity , 2014, 1403.5272.

[50]  T. Henning,et al.  Impacts of planet migration models on planetary populations Effects of saturation, cooling and stellar irradiation , 2014, 1402.5969.

[51]  William R. Ward,et al.  Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration , 2002 .

[52]  Tristan Guillot,et al.  BULK COMPOSITION OF GJ 1214b AND OTHER SUB-NEPTUNE EXOPLANETS , 2013, 1305.2629.

[53]  A. Watson,et al.  The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus , 1981 .

[54]  R. P. Butler,et al.  Detection of a Neptune-Mass Planet in the ρ1 Cancri System Using the Hobby-Eberly Telescope , 2004, astro-ph/0408585.

[55]  Konstantin Batygin,et al.  EVOLUTION OF OHMICALLY HEATED HOT JUPITERS , 2011, 1101.3800.

[56]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[57]  Usa,et al.  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj EVOLUTION OF THE SOLAR ACTIVITY OVER TIME AND EFFECTS ON PLANETARY ATMOSPHERES: I. HIGH-ENERGY IRRADIANCES (1–1700 A) , 2004 .

[58]  C. Moutou,et al.  The HARPS search for southern extra-solar planets , 2004, Astronomy & Astrophysics.

[59]  S. Raymond,et al.  No universal minimum-mass extrasolar nebula: evidence against in situ accretion of systems of hot super-Earths , 2014, 1401.3743.

[60]  A. Wolfgang,et al.  HOW ROCKY ARE THEY? THE COMPOSITION DISTRIBUTION OF KEPLER’S SUB-NEPTUNE PLANET CANDIDATES WITHIN 0.15 AU , 2014, 1409.2982.

[61]  D. Lin,et al.  USING FU ORIONIS OUTBURSTS TO CONSTRAIN SELF-REGULATED PROTOSTELLAR DISK MODELS , 1993, astro-ph/9312015.

[62]  M. R. Haas,et al.  MASSES, RADII, AND ORBITS OF SMALL KEPLER PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS , 2014, 1401.4195.

[63]  R. Kuiper,et al.  Hydrodynamics of embedded planets' first atmospheres - II. A rapid recycling of atmospheric gas , 2014, 1410.4659.

[64]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[65]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[66]  A. Fortier,et al.  Theoretical models of planetary system formation: mass vs. semi-major axis , 2013, 1307.4864.

[67]  R. Helled,et al.  The effect of composition on the evolution of giant and intermediate-mass planets , 2013, 1307.2033.

[68]  Y. Alibert On the radius of habitable planets , 2013, 1311.3039.

[69]  Jonathan J. Fortney,et al.  HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND , 2012, 1205.0010.

[70]  H. Lammer,et al.  The Extreme Ultraviolet and X-Ray Sun in Time: High-Energy Evolutionary Tracks of a Solar-Like Star , 2015, 1504.04546.

[71]  William R. Ward,et al.  Survival of Planetary Systems , 1997 .

[72]  A. Szentgyorgyi,et al.  THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS , 2014, 1412.8687.

[73]  T. Guillot On the radiative equilibrium of irradiated planetary atmospheres , 2010, 1006.4702.

[74]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[75]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[76]  E. Chiang,et al.  Catastrophic evaporation of rocky planets , 2013, 1302.2147.

[77]  Takeru K. Suzuki,et al.  Atmospheric Escape by Magnetically Driven Wind from Gaseous Planets , 2013, 1311.0972.

[78]  T. Davis,et al.  The coronal X-ray - age relation and its implications for the evaporation of exoplanets , 2011, 1111.0031.

[79]  Y. Alibert Constraining the volatile fraction of planets from transit observations , 2016, 1605.05064.

[80]  Yanqin Wu,et al.  ATMOSPHERES OF LOW-MASS PLANETS: THE “BOIL-OFF” , 2015, 1506.02049.

[81]  Norman Murray,et al.  ATMOSPHERIC ESCAPE FROM HOT JUPITERS , 2008, 0811.0006.

[82]  “Hot Jupiters” , 2006 .

[83]  A. Crida,et al.  Spin-orbit angle distribution and the origin of (mis)aligned hot Jupiters , 2014, 1405.0960.

[84]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[85]  John C. Geary,et al.  ARCHITECTURE OF KEPLER'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES , 2012, The Astrophysical Journal.

[86]  S. Ginzburg,et al.  SUPER-EARTH ATMOSPHERES: SELF-CONSISTENT GAS ACCRETION AND RETENTION , 2015, 1512.07925.

[87]  T. Guillot,et al.  A non-grey analytical model for irradiated atmospheres - I. Derivation , 2013, 1311.6597.

[88]  P. Giommi,et al.  The PLATO 2.0 mission , 2013, 1310.0696.

[89]  H. Rauer,et al.  A DEFINITION FOR GIANT PLANETS BASED ON THE MASS–DENSITY RELATIONSHIP , 2015, 1506.05097.

[90]  Bruce A. Macintosh,et al.  Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere , 2013, Science.

[91]  S. Seager,et al.  THREE POSSIBLE ORIGINS FOR THE GAS LAYER ON GJ 1214b , 2009, 0912.3243.

[92]  Tokyo Institute of Technology,et al.  MASS-LOSS EVOLUTION OF CLOSE-IN EXOPLANETS: EVAPORATION OF HOT JUPITERS AND THE EFFECT ON POPULATION , 2014, 1401.2511.

[93]  Radius and Structure Models of the First Super-Earth Planet , 2006, astro-ph/0610122.

[94]  A. Bonomo,et al.  A 1.9 EARTH RADIUS ROCKY PLANET AND THE DISCOVERY OF A NON-TRANSITING PLANET IN THE KEPLER-20 SYSTEM , 2016, 1608.06836.

[95]  C. Ormel,et al.  MIGRATION RATES OF PLANETS DUE TO SCATTERING OF PLANETESIMALS , 2012, 1207.7104.

[96]  Y. Alibert,et al.  Characterization of exoplanets from their formation - II. The planetary mass-radius relationship , 2012, 1206.3303.

[97]  J. Fortney,et al.  UNDERSTANDING THE MASS–RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION , 2013, 1311.0329.

[98]  C. Dorn,et al.  Bayesian analysis of interiors of HD 219134b, Kepler-10b, Kepler-93b, CoRoT-7b, 55 Cnc e, and HD 97658b using stellar abundance proxies , 2016, 1609.03909.

[99]  A. Santerne,et al.  Constraining planet structure from stellar chemistry : the cases of CoRoT-7, Kepler-10, and Kepler-93 , 2015, 1507.08081.

[100]  G. Marcy,et al.  THE MASS–RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII , 2013, 1312.0936.

[101]  K. Heng,et al.  ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION , 2014, 1405.0026.

[102]  S. Seager,et al.  HIGH METALLICITY AND NON-EQUILIBRIUM CHEMISTRY IN THE DAYSIDE ATMOSPHERE OF HOT-NEPTUNE GJ 436b , 2010, 1004.5121.

[103]  R. Sari,et al.  Atmospheric mass loss during planet formation: The importance of planetesimal impacts , 2014, 1406.6435.

[104]  D. Queloz,et al.  Detection of a transit of the super-Earth 55 Cancri e with warm Spitzer , 2011, 1105.0415.

[105]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[106]  T. Guillot,et al.  Composition and fate of short-period super-Earths: The case of CoRoT-7b , 2009, 0907.3067.

[107]  Howard Isaacson,et al.  ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES , 2013, 1303.0227.

[108]  M. Podolak The contribution of small grains to the opacity of protoplanetary atmospheres , 2003 .

[109]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[110]  C. Ormel AN ATMOSPHERIC STRUCTURE EQUATION FOR GRAIN GROWTH , 2014, 1406.4146.

[111]  Willy Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004 .

[112]  T. Guillot,et al.  A reassessment of the in situ formation of close-in super-Earths , 2015, 1504.03237.

[113]  D. Queloz,et al.  CHEOPS: A transit photometry mission for ESA's small mission programme , 2013, 1305.2270.

[114]  Y. Alibert,et al.  The unstable CO2 feedback cycle on ocean planets , 2015, 1507.01727.

[115]  S. O. Physics,et al.  FORMING CLOSE-IN EARTH-LIKE PLANETS VIA A COLLISION–MERGER MECHANISM IN LATE-STAGE PLANET FORMATION , 2010, 1012.1926.

[116]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[117]  S. Seager,et al.  Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres , 2007, 0710.4941.

[118]  G. Marcy,et al.  Prevalence of Earth-size Planets Orbiting Sun-like Stars , 2015, 1510.03902.

[119]  E. Chiang,et al.  TO COOL IS TO ACCRETE: ANALYTIC SCALINGS FOR NEBULAR ACCRETION OF PLANETARY ATMOSPHERES , 2015, 1508.05096.

[120]  Willy Benz,et al.  Planet formation with envelope enrichment: new insights on planetary diversity , 2016, 1609.00960.

[121]  Y. Alibert,et al.  A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes , 2016, 1609.03908.

[122]  R. Helled,et al.  CONVECTION AND MIXING IN GIANT PLANET EVOLUTION , 2015, 1502.03270.

[123]  C. Dominik,et al.  The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer , 2010, 1012.0727.

[124]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[125]  Kevin Heng,et al.  THE DEPENDENCE OF BROWN DWARF RADII ON ATMOSPHERIC METALLICITY AND CLOUDS: THEORY AND COMPARISON WITH OBSERVATIONS , 2011, 1102.3922.