The Visual Orbit of Pegasi

We have determined the visual orbit for the spectroscopic binary ι Pegasi with interferometric visibility data obtained by the Palomar Testbed Interferometer in 1997. ι Peg is a double-lined binary system whose minimum masses and spectral typing suggests the possibility of eclipses. Our orbital and component diameter determinations do not favor the eclipse hypothesis: the limb-to-limb separation of the two components is 0.151±0.069 mas at conjunction. Our conclusion that the ι Peg system does not eclipse is supported by high-precision photometric observations. The physical parameters implied by our visual orbit and the spectroscopic orbit of Fekel & Tomkin are in good agreement with those inferred by other means. In particular, the orbital parallax of the system is determined to be 86.9±1.0 mas, and masses of the two components are determined to be 1.326±0.016 and 0.819±0.009 M, respectively.

[1]  Braden E. Hines,et al.  ASEPS-0 Testbed Interferometer , 1994, Astronomical Telescopes and Instrumentation.

[2]  S. Wolff,et al.  THE ANGULAR MOMENTUM OF MAIN SEQUENCE STARS AND ITS RELATION TO STELLAR ACTIVITY , 1997 .

[3]  David Mozurkewich,et al.  Angular diameter measurements of stars , 1991 .

[4]  F. C. Fekel,et al.  The double-lined spectroscopic binary IOTA Pegasi. , 1983 .

[5]  H. Abt,et al.  Multiplicity among solar-type stars. , 1976 .

[6]  R. Paul Butler,et al.  The Planet around 51 Pegasi , 1997 .

[7]  Michael Shao,et al.  The orbit of Phi Cygni measured with long-baseline optical interferometry - Component masses and absolute magnitudes , 1992 .

[8]  Michael Shao,et al.  Visibility calibrations with the Palomar Testbed Interferometer , 1998, Astronomical Telescopes and Instrumentation.

[9]  Andreas Quirrenbach,et al.  Very high precision orbit of capella by long baseline interferometry , 1994 .

[10]  P. Conti,et al.  THE ABUNDANCES OF LITHIUM AND BERYLLIUM IN SOME F DWARFS AND K GIANTS. , 1966 .

[11]  David Mozurkewich,et al.  Apparent orbit of the spectroscopic binary Beta Arietis with the time Mark III Stellar Interferometer , 1990 .

[12]  David Mozurkewich,et al.  Orbits of Small Angular Scale Binaries Resolved with the Mark III Interferometer , 1995 .

[13]  Todd J. Henry,et al.  The mass-luminosity relation for stars of mass 1.0 to 0.08 solar mass , 1993 .

[14]  et al,et al.  An Interferometric Search for Bright Companions to 51 Pegasi , 1998 .

[15]  Michael Shao,et al.  Determination of the visual orbit of the spectroscopic binary Alpha Andromedae with submilliarcsecond precision , 1992 .

[16]  M. Shao,et al.  High angular resolution measurements of Algol , 1993 .

[17]  Donald H. Epand,et al.  PRECISE AUTOMATIC DIFFERENTIAL STELLAR PHOTOMETRY , 1991 .

[18]  D. Duncan Lithium abundances, K line emission and ages of nearby solar type stars , 1981 .

[19]  G. Herbig Lithium Abundances in F5-G8 Dwarfs. , 1965 .

[20]  et al,et al.  The Palomar Testbed Interferometer , 1999 .

[21]  David Mozurkewich,et al.  The orbit of Alpha Equulei measured with long-baseline optical interferometry - Component masses, spectral types, and evolutionary state , 1992 .

[22]  Nicholas M. Elias,et al.  Navy Prototype Optical Interferometer Observations of the Double Stars Mizar A and Matar , 1998 .

[23]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[24]  David Mozurkewich,et al.  The spectroscopic binary eta Andromedae: Determination of the orbit by optical interferometry , 1993 .

[25]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[26]  Luis Carrasco,et al.  JHK INFRARED STANDARD STARS AND ABSOLUTE CALIBRATION OF THE SAN PEDRO MARTIR OBSERVATORY (OAN) PHOTOMETRIC SYSTEM , 1991 .