Three-dimensional anisotropic seismic wave modelling in spherical coordinates by a collocated-grid finite-difference method

SUMMARY To simulate seismic wave propagation in the spherical Earth, the Earth’s curvature has to be taken into account. This can be done by solving the seismic wave equation in spherical coordinates by numerical methods. In this paper, we use an optimized, collocated-grid finite-difference scheme to solve the anisotropic velocity–stress equation in spherical coordinates. To increase the efficiency of the finite-difference algorithm, we use a non-uniform grid to discretize the computational domain. The grid varies continuously with smaller spacing in low velocity layers and thin layer regions and with larger spacing otherwise. We use stress-image setting to implement the free surface boundary condition on the stress components. To implement the free surface boundary condition on the velocity components, we use a compact scheme near the surface. If strong velocity gradient exists near the surface, a lower-order scheme is used to calculate velocity difference to stabilize the calculation. The computational domain is surrounded by complex-frequency shifted perfectly matched layers implemented through auxiliary differential equations (ADE CFS-PML) in a local Cartesian coordinate. We compare the simulation results with the results from the normal mode method in the isotropic and anisotropic models and verify the accuracy of the finite-difference method.

[1]  Wei Zhang,et al.  Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids , 2012 .

[2]  A. Fichtner Full Seismic Waveform Modelling and Inversion , 2011 .

[3]  Martin Galis,et al.  Stable discontinuous staggered grid in the finite-difference modelling of seismic motion , 2010 .

[4]  Li Zhao,et al.  Synthetic seismograms by normal-mode summation: a new derivation and numerical examples , 2010 .

[5]  Wei Zhang,et al.  Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling , 2010 .

[6]  Andreas Fichtner,et al.  Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods , 2009 .

[7]  Peter Moczo,et al.  Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals , 2009 .

[8]  Wei Zhang,et al.  Numerical simulation of strong ground motion for the Ms8.0 Wenchuan earthquake of 12 May 2008 , 2008 .

[9]  Heiner Igel,et al.  Global SH-wave propagation using a parallel axisymmetric spherical finite-difference scheme: Application to whole mantle scattering , 2008 .

[10]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[11]  Antonios Giannopoulos,et al.  Complex frequency shifted convolution PML for FDTD modelling of elastic waves , 2007 .

[12]  Alexandre Fournier,et al.  A two‐dimensional spectral‐element method for computing spherical‐earth seismograms – I. Moment‐tensor source , 2007 .

[13]  A. Giannopoulos,et al.  A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .

[14]  Wei Zhang,et al.  Traction image method for irregular free surface boundaries in finite difference seismic wave simulation , 2006 .

[15]  Steven M. Day,et al.  Misfit Criteria for Quantitative Comparison of Seismograms , 2006 .

[16]  É. Delavaud,et al.  Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations , 2005 .

[17]  J. Vilotte,et al.  The Newmark scheme as velocity–stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics , 2005 .

[18]  J. Kristek,et al.  3D Heterogeneous Staggered-grid Finite-difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities , 2002 .

[19]  T. Nissen‐Meyer,et al.  Wave propagation in 3D spherical sections: effects of subduction zones , 2002 .

[20]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[21]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[22]  Peter Moczo,et al.  Efficient Methods to Simulate Planar Free Surface in the 3D 4th-Order Staggered-Grid Finite-Difference Schemes , 2002 .

[23]  Hiroshi Takenaka,et al.  Modelling seismic wave propagation in a two-dimensional cylindrical whole-earth model using the pseudospectral method , 2001 .

[24]  Eli Turkel,et al.  Compact Implicit MacCormack-Type Schemes with High Accuracy , 2000 .

[25]  Heiner Igel,et al.  Wave propagation in three-dimensional spherical sections by the Chebyshev spectral method , 1999 .

[26]  Arben Pitarka,et al.  3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing , 1999 .

[27]  R. Hixon,et al.  On Increasing the Accuracy of MacCprmack Schemes for Aeroacoustic Applications , 1997 .

[28]  Johan O. A. Robertsson,et al.  A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography , 1996 .

[29]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[30]  Robert W. Graves,et al.  Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , 1996, Bulletin of the Seismological Society of America.

[31]  Heiner Igel,et al.  P‐SV wave propagation in the Earth's mantle using finite differences: Application to heterogeneous lowermost mantle structure , 1996 .

[32]  Jiří Zahradník,et al.  Simple Elastic Finite-Difference Scheme , 1995 .

[33]  Heiner Igel,et al.  Anisotropic wave propagation through finite-difference grids , 1995 .

[34]  Nanxun Dai,et al.  Wave propagation in heterogeneous, porous media: A velocity‐stress, finite‐difference method , 1995 .

[35]  Heiner Igel,et al.  SH-wave propagation in the whole mantle using high-order finite differences , 1995 .

[36]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[37]  Peter Mora,et al.  Finite differences on minimal grids , 1994 .

[38]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[39]  Antonios Vafidis,et al.  Elastic wave propagation using fully vectorized high order finite-difference algorithms , 1992 .

[40]  E. Kanasewich,et al.  ELASTIC WAVE PROPAGATION IN TRANSVERSELY ISOTROPIC MEDIA USING FINITE DIFFERENCES1 , 1990 .

[41]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[42]  Eli Turkel,et al.  A fourth-order accurate finite-difference scheme for the computation of elastic waves , 1986 .

[43]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[44]  Jean Virieux,et al.  SH-wave propagation in heterogeneous media; velocity-stress finite-difference method , 1984 .

[45]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[46]  R. Madariaga Dynamics of an expanding circular fault , 1976, Bulletin of the Seismological Society of America.

[47]  Eli Turkel,et al.  Dissipative two-four methods for time-dependent problems , 1976 .

[48]  R. Maccormack The Effect of Viscosity in Hypervelocity Impact Cratering , 1969 .

[49]  Andreas Fichtner,et al.  Simulation and Inversion of Seismic Wave Propagation on Continental Scales Based on a Spectral - Element Method , 2009 .

[50]  Zhuang He,et al.  Two-dimensional seismic wave simulation in anisotropic media by non-staggered finite difference method , 2009 .

[51]  P. Mora,et al.  An Efficient Implementation of the Free Surface Boundary Condition In 2-D And 3-D Elastic Cases , 1993 .

[52]  A. Love A treatise on the mathematical theory of elasticity , 1892 .