Bayesian Total-Evidence Dating Reveals the Recent Crown Radiation of Penguins

Abstract The total‐evidence approach to divergence time dating uses molecular and morphological data from extant and fossil species to infer phylogenetic relationships, species divergence times, and macroevolutionary parameters in a single coherent framework. Current model‐based implementations of this approach lack an appropriate model for the tree describing the diversification and fossilization process and can produce estimates that lead to erroneous conclusions. We address this shortcoming by providing a total‐evidence method implemented in a Bayesian framework. This approach uses a mechanistic tree prior to describe the underlying diversification process that generated the tree of extant and fossil taxa. Previous attempts to apply the total‐evidence approach have used tree priors that do not account for the possibility that fossil samples may be direct ancestors of other samples, that is, ancestors of fossil or extant species or of clades. The fossilized birth‐death (FBD) process explicitly models the diversification, fossilization, and sampling processes and naturally allows for sampled ancestors. This model was recently applied to estimate divergence times based on molecular data and fossil occurrence dates. We incorporate the FBD model and a model of morphological trait evolution into a Bayesian total‐evidence approach to dating species phylogenies. We apply this method to extant and fossil penguins and show that the modern penguins radiated much more recently than has been previously estimated, with the basal divergence in the crown clade occurring at ∼12.7 Ma and most splits leading to extant species occurring in the last 2 myr. Our results demonstrate that including stem‐fossil diversity can greatly improve the estimates of the divergence times of crown taxa. The method is available in BEAST2 (version 2.4) software www.beast2.org with packages SA (version at least 1.1.4) and morph‐models (version at least 1.0.4) installed.

[1]  F. Ronquist,et al.  Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology Total-evidence Dating under the Fossilized Birth–death Process , 2022 .

[2]  A. Lambert,et al.  Quantifying Age-dependent Extinction from Species Phylogenies , 2015, Systematic biology.

[3]  Alexei J Drummond,et al.  The space of ultrametric phylogenetic trees. , 2014, Journal of theoretical biology.

[4]  A. Mooers,et al.  Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships , 2015, Proceedings of the Royal Society B: Biological Sciences.

[5]  Allison Y. Hsiang,et al.  The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record , 2015, BMC Evolutionary Biology.

[6]  M. Steel,et al.  Age-Dependent Speciation Can Explain the Shape of Empirical Phylogenies , 2015, Systematic biology.

[7]  P. Donoghue,et al.  Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors , 2015, Proceedings of the Royal Society B: Biological Sciences.

[8]  Ziheng Yang,et al.  Characterization of the Uncertainty of Divergence Time Estimation under Relaxed Molecular Clock Models Using Multiple Loci , 2014, Systematic biology.

[9]  Alexei J. Drummond,et al.  Calibrated Birth–Death Phylogenetic Time-Tree Priors for Bayesian Inference , 2013, Systematic biology.

[10]  G. Ortí,et al.  An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae). , 2015, Molecular phylogenetics and evolution.

[11]  Clint A. Boyd,et al.  Methods for the quantitative comparison of molecular estimates of clade age and the fossil record. , 2015, Systematic biology.

[12]  Chris M Rands,et al.  Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment , 2014, GigaScience.

[13]  Md. Shamsuzzoha Bayzid,et al.  Whole-genome analyses resolve early branches in the tree of life of modern birds , 2014, Science.

[14]  M. Hoffmeister Phylogenetic Characters in the Humerus and Tarsometatarsus of Penguins , 2014 .

[15]  Michael S. Y. Lee,et al.  Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals , 2014, Proceedings of the Royal Society B: Biological Sciences.

[16]  April M. Wright,et al.  Bayesian Analysis Using a Simple Likelihood Model Outperforms Parsimony for Estimation of Phylogeny from Discrete Morphological Data , 2014, PloS one.

[17]  Michael S. Y. Lee,et al.  Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds , 2014, Science.

[18]  Tanja Stadler,et al.  Bayesian Inference of Sampled Ancestor Trees for Epidemiology and Fossil Calibration , 2014, PLoS Comput. Biol..

[19]  Michael S. Y. Lee,et al.  Morphological clocks in paleontology, and a mid-Cretaceous origin of crown Aves. , 2014, Systematic biology.

[20]  G. Lohmann,et al.  Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition , 2014 .

[21]  Jeremy M. Brown Predictive approaches to assessing the fit of evolutionary models. , 2014, Systematic biology.

[22]  Ming-Hui Chen,et al.  Posterior predictive Bayesian phylogenetic model selection. , 2014, Systematic biology.

[23]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[24]  S. Nielsen,et al.  The Evolution of Seabirds in the Humboldt Current: New Clues from the Pliocene of Central Chile , 2014, PloS one.

[25]  L. Revell ANCESTRAL CHARACTER ESTIMATION UNDER THE THRESHOLD MODEL FROM QUANTITATIVE GENETICS , 2014, Evolution; international journal of organic evolution.

[26]  Daniele Silvestro,et al.  Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. , 2014, Systematic biology.

[27]  J. Huelsenbeck,et al.  The fossilized birth–death process for coherent calibration of divergence-time estimates , 2013, Proceedings of the National Academy of Sciences.

[28]  C. Millar,et al.  Evidence for a recent origin of penguins , 2013, Biology Letters.

[29]  Marc R Spencer,et al.  Efficacy or convenience? Model‐based approaches to phylogeny estimation using morphological data , 2013, Cladistics : the international journal of the Willi Hennig Society.

[30]  David Welch,et al.  Recursive algorithms for phylogenetic tree counting , 2013, Algorithms for Molecular Biology.

[31]  R. Bouckaert,et al.  Looking for trees in the forest: summary tree from posterior samples , 2013, BMC Evolutionary Biology.

[32]  G. Slater Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous‐Palaeogene boundary , 2013 .

[33]  S. Marenssi,et al.  Diversidad de vertebrados marino costeros de la Provincia Weddelliana en un horizonte basal (Ypresiano, Eoceno) del Alomiembro Cucullaea I, Formación La Meseta, isla Seymour (Marambio), Antártida , 2013 .

[34]  Hannah M. Wood,et al.  Treating fossils as terminal taxa in divergence time estimation reveals ancient vicariance patterns in the palpimanoid spiders. , 2013, Systematic biology.

[35]  J. Hansen,et al.  Climate sensitivity, sea level and atmospheric carbon dioxide , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[37]  M. Reguero,et al.  Weddellian marine / coastal vertebrates diversity from a basal horizon ( Ypresian , Eocene ) of the Cucullaea I Allomember , La Meseta formation , Seymour ( Marambio ) Island , Antarctica , 2013 .

[38]  Ziheng Yang,et al.  The unbearable uncertainty of Bayesian divergence time estimation , 2012 .

[39]  G. Didier,et al.  The reconstructed evolutionary process with the fossil record. , 2012, Journal of theoretical biology.

[40]  S. Bonhoeffer,et al.  Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV) , 2012, Proceedings of the National Academy of Sciences.

[41]  Mark T. Holder,et al.  An Algorithm for Calculating the Probability of Classes of Data Patterns on a Genealogy , 2012, PLoS currents.

[42]  A. L. Cione,et al.  The most recent record of †Palaeospheniscus bergi Moreno & Mercerat, 1891 (Aves, Spheniscidae) from the middle Miocene, northeastern Patagonia , 2012 .

[43]  Douglas S. Jones,et al.  Origin of the white shark Carcharodon (Lamniformes: Lamnidae) based on recalibration of the Upper Neogene Pisco Formation of Peru , 2012 .

[44]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[45]  M. Heads Bayesian transmogrification of clade divergence dates: a critique , 2012 .

[46]  T. Heath,et al.  A hierarchical Bayesian model for calibrating estimates of species divergence times. , 2012, Systematic biology.

[47]  M. Suchard,et al.  Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. , 2012, Molecular biology and evolution.

[48]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[49]  John P Huelsenbeck,et al.  A dirichlet process prior for estimating lineage-specific substitution rates. , 2012, Molecular biology and evolution.

[50]  D. Ksepka,et al.  New Fossil Penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand Reveal the Skeletal Plan of Stem Penguins , 2012 .

[51]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[52]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[53]  Wai Lok Sibon Li,et al.  Model Averaging and Bayes Factor Calculation of Relaxed Molecular Clocks in Bayesian Phylogenetics , 2011, Molecular biology and evolution.

[54]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic biology.

[55]  Alexei J. Drummond,et al.  Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation , 2011, Systematic biology.

[56]  Ziheng Yang,et al.  Exploring uncertainty in the calibration of the molecular clock , 2012, Biology Letters.

[57]  Tanja Stadler,et al.  Inferring speciation and extinction rates under different sampling schemes. , 2011, Molecular biology and evolution.

[58]  A. Pyron,et al.  Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. , 2011, Systematic biology.

[59]  Ziheng Yang,et al.  Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. , 2011, Molecular biology and evolution.

[60]  B. Lieberman,et al.  Phylogenetic and Biogeographic Analysis of Sphaerexochine Trilobites , 2011, PloS one.

[61]  A. L. Cione,et al.  Marine vertebrate assemblages in the southwest Atlantic during the Miocene , 2011 .

[62]  D. Ksepka,et al.  Penguins Past, Present, and Future: Trends in the Evolution of the Sphenisciformes , 2011 .

[63]  A. Chadwick,et al.  A high resolution stratigraphic framework for the remarkable fossil cetacean assemblage of the Miocene/Pliocene Pisco Formation, Peru , 2011 .

[64]  J. Scott Provan,et al.  A Fast Algorithm for Computing Geodesic Distances in Tree Space , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[65]  T. Stadler Sampling-through-time in birth-death trees. , 2010, Journal of theoretical biology.

[66]  J. Vinther,et al.  Fossil Evidence for Evolution of the Shape and Color of Penguin Feathers , 2010, Science.

[67]  M. Suchard,et al.  Bayesian random local clocks, or one rate to rule them all , 2010, BMC Biology.

[68]  D. Ksepka,et al.  The Basal Penguin (Aves: Sphenisciformes) Perudyptes devriesi and a Phylogenetic Evaluation of the Penguin Fossil Record , 2010 .

[69]  L. Grande,et al.  AN EMPIRICAL SYNTHETIC PATTERN STUDY OF GARS (LEPISOSTEIFORMES) AND CLOSELY RELATED SPECIES, BASED MOSTLY ON SKELETAL ANATOMY. THE RESURRECTION OF HOLOSTEI , 2010 .

[70]  T. Stadler On incomplete sampling under birth-death models and connections to the sampling-based coalescent. , 2009, Journal of theoretical biology.

[71]  Nicolas Lartillot,et al.  PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating , 2009, Bioinform..

[72]  Chad D. Brock,et al.  Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates , 2009, Proceedings of the National Academy of Sciences.

[73]  S. Ho,et al.  Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. , 2009, Systematic biology.

[74]  Hervé Philippe,et al.  Computational methods for evaluating phylogenetic models of coding sequence evolution with dependence between codons. , 2009, Molecular biology and evolution.

[75]  M. Hutchinson,et al.  Phylogenetic uncertainty and molecular clock calibrations: a case study of legless lizards (Pygopodidae, Gekkota). , 2009, Molecular phylogenetics and evolution.

[76]  Marc A Suchard,et al.  Fully Bayesian tests of neutrality using genealogical summary statistics , 2008, BMC Genetics.

[77]  So-Yeon Park,et al.  Dinucleotide repeat polymorphism in Fms-like tyrosine kinase-1 (Flt-1) gene is not associated with preeclampsia , 2008, BMC Medical Genetics.

[78]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[79]  D. Mindell,et al.  Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages , 2008, BMC Biology.

[80]  Peter E Midford,et al.  Estimating a binary character's effect on speciation and extinction. , 2007, Systematic biology.

[81]  Clint A. Boyd,et al.  Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change , 2007, Proceedings of the National Academy of Sciences.

[82]  Ziheng Yang,et al.  Inferring speciation times under an episodic molecular clock. , 2007, Systematic biology.

[83]  A. Lambert THE CONTOUR OF SPLITTING TREES IS A LÉVY PROCESS , 2007, 0704.3098.

[84]  C. Tambussi,et al.  A new Miocene penguin from Patagonia and its phylogenetic relationships , 2007 .

[85]  N. Giannini,et al.  The phylogeny of the living and fossil Sphenisciformes (penguins) , 2006 .

[86]  D. Penny,et al.  Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. , 2006, Molecular biology and evolution.

[87]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[88]  S. Walsh,et al.  New penguin remains from the Pliocene of Northern Chile , 2006 .

[89]  B. Rannala,et al.  Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference , 1996, Journal of Molecular Evolution.

[90]  P. Jadwiszczak,et al.  Eocene penguins of Seymour Island, Antarctica: Taxonomy , 2006 .

[91]  Ziheng Yang,et al.  Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. , 2006, Molecular biology and evolution.

[92]  A. Baker,et al.  Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling , 2006, Proceedings of the Royal Society B: Biological Sciences.

[93]  Joseph Felsenstein,et al.  Using the quantitative genetic threshold model for inferences between and within species , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[94]  N. Giannini,et al.  A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences , 2005 .

[95]  H. Kishino,et al.  Estimation of Divergence Times from Molecular Sequence Data , 2005 .

[96]  N. Giannini,et al.  PHYLOGENY OF EXTANT PENGUINS BASED ON INTEGUMENTARY AND BREEDING CHARACTERS , 2004 .

[97]  J. Huelsenbeck,et al.  Bayesian phylogenetic analysis of combined data. , 2004, Systematic biology.

[98]  Ziheng Yang,et al.  Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. , 2003, Genetics.

[99]  Pablo A. Goloboff,et al.  Parsimony, likelihood, and simplicity , 2003 .

[100]  Jonathan P. Bollback,et al.  Bayesian model adequacy and choice in phylogenetics. , 2002, Molecular biology and evolution.

[101]  M. Sanderson Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.

[102]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[103]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[104]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[105]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[106]  M A Newton,et al.  Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods , 1999, Biometrics.

[107]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[108]  Michael J. Sanderson,et al.  A Nonparametric Approach to Estimating Divergence Times in the Absence of Rate Constancy , 1997 .

[109]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[110]  M. Foote On the probability of ancestors in the fossil record , 1996, Paleobiology.

[111]  D M Raup,et al.  Fossil preservation and the stratigraphic ranges of taxa , 1996, Paleobiology.

[112]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[113]  R M May,et al.  The reconstructed evolutionary process. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[114]  L. Pauling,et al.  Evolutionary Divergence and Convergence in Proteins , 1965 .

[115]  R. Owen Palaeontology , 2018, Nature.

[116]  D. Kendall On the Generalized "Birth-and-Death" Process , 1948 .

[117]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[118]  G. Yule,et al.  A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .