The metric quality of full-profile judgments and the number-of-attribute-levels effect in conjoint analysis

Abstract Several studies have documented the existence of a positive association between the number of levels used for an attribute and the attribute's estimated influence (relative importance) on preference judgments in conjoint analysis. We propose that this number-of-levels effect is contingent upon the (lack of) metricity in the preference judgments. We use magnitude estimation to test this idea. We find that rating scale and magnitude estimation data provide comparable average effects. We then use the magnitude estimation data to categorize respondents into “metric” and “nonmetric” groups, and we find that the number-of-levels effect is substantially smaller for respondents who do satisfy the criteria for metric quality than for respondents who do not.

[1]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[2]  Charles B. Weinberg,et al.  Design of Subscription Programs for a Performing Arts Series , 1981 .

[3]  B. Wegener Category-Rating and Magnitude Estimation Scaling Techniques , 1983 .

[4]  Richard P. Brinker,et al.  Validation of ratio scales of opinion by multimodality matching , 1971 .

[5]  Robert L. Hamblin,et al.  Social Attitudes: Magnitude Measurement and Theory , 1974 .

[6]  Willem E. Saris,et al.  Variation in response functions : a source of measurement error in attitude research , 1988 .

[7]  N. Anderson Foundations of information integration theory , 1981 .

[8]  D. Cross,et al.  Some Technical Notes on Psychophysical Scaling , 1974 .

[9]  Paul E. Green,et al.  Hybrid Models for Conjoint Analysis: An Expository Review , 1984 .

[10]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[11]  S. S. Stevens,et al.  Psychophysics: Introduction to Its Perceptual, Neural and Social Prospects , 1975 .

[12]  Philippe Cattin,et al.  Commercial Use of Conjoint Analysis: An Update , 1989 .

[13]  M. Strube Combining and comparing significance levels from nonindependent hypothesis tests. , 1985 .

[14]  Dick R. Wittink,et al.  Comparing Derived Importance Weights Across Attributes , 1982 .

[15]  Dick R. Wittink,et al.  Commercial use of conjoint analysis in Europe: Results and critical reflections , 1994 .

[16]  Milton Lodge,et al.  Magnitude Scaling: Quantitative Measurement of Opinions , 1981 .

[17]  Sanford Labovitz,et al.  The Assignment of Numbers to Rank Order Categories , 1970 .

[18]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[19]  S. Addelman Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments , 1962 .

[20]  Richard M. Johnson Trade-Off Analysis of Consumer Values , 1974 .

[21]  Dick R. Wittink,et al.  The effect of differences in the number of attribute levels on conjoint results , 1990 .

[22]  R. Ferber Handbook of Marketing Research , 1974 .