Scaling Laws for Age of Information in Wireless Networks

We study age of information in a multiple source-multiple destination setting with a focus on its scaling in large wireless networks. There are <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> nodes uniformly and independently distributed on a fixed area that are randomly paired with each other to form <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> source-destination (S-D) pairs. Each source node wants to keep its destination node as up-to-date as possible. To accommodate successful communication between all <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> S-D pairs, we first propose a three-phase transmission scheme which utilizes local cooperation between the nodes along with what we call <italic>mega update packets</italic> to serve multiple S-D pairs at once. We show that under the proposed scheme average age of an S-D pair scales as <inline-formula> <tex-math notation="LaTeX">$O\left({n^{\frac {1}{4}}\log n}\right)$ </tex-math></inline-formula> as the number of users, <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>, in the network grows. Next, we observe that communications that take place in Phases I and III of the proposed scheme are scaled-down versions of network-level communications. With this along with scale-invariance of the system, we introduce hierarchy to improve this scaling result and show that when <italic>hierarchical cooperation</italic> between users is utilized, an average age scaling of <inline-formula> <tex-math notation="LaTeX">$O(n^{\alpha (h)}\log n)$ </tex-math></inline-formula> per-user is achievable, where <inline-formula> <tex-math notation="LaTeX">$h$ </tex-math></inline-formula> denotes the number of hierarchy levels and <inline-formula> <tex-math notation="LaTeX">$\alpha (h) = \frac {1}{3\cdot 2^{h}+1}$ </tex-math></inline-formula>. We note that <inline-formula> <tex-math notation="LaTeX">$\alpha (h)$ </tex-math></inline-formula> tends to 0 as <inline-formula> <tex-math notation="LaTeX">$h$ </tex-math></inline-formula> increases, and asymptotically, the average age scaling of the proposed hierarchical scheme is <inline-formula> <tex-math notation="LaTeX">$O(\log n)$ </tex-math></inline-formula>. To the best of our knowledge, this is the best average age scaling result in a status update system with multiple S-D pairs.

[1]  Elif Uysal-Biyikoglu,et al.  Scheduling status updates to minimize age of information with an energy harvesting sensor , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[2]  Eytan Modiano,et al.  Capacity and delay tradeoffs for ad hoc mobile networks , 2004, IEEE Transactions on Information Theory.

[3]  Ness B. Shroff,et al.  Delay and Capacity Trade-Offs in Mobile Ad Hoc Networks: A Global Perspective , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[4]  Jingxian Wu,et al.  Optimizing age-of-information and energy efficiency tradeoff for mobile pushing notifications , 2017, 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[5]  H. Vincent Poor,et al.  Age-Minimal Online Policies for Energy Harvesting Sensors with Incremental Battery Recharges , 2018, 2018 Information Theory and Applications Workshop (ITA).

[6]  Zhisheng Niu,et al.  Timely Status Update in Massive IoT Systems: Decentralized Scheduling for Wireless Uplinks , 2018, ArXiv.

[7]  Walid Saad,et al.  Deep Reinforcement Learning for Minimizing Age-of-Information in UAV-Assisted Networks , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[8]  Roy D. Yates,et al.  Timeliness in Lossless Block Coding , 2016, 2016 Data Compression Conference (DCC).

[9]  Roy D. Yates,et al.  Lazy is timely: Status updates by an energy harvesting source , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[10]  Eytan Modiano,et al.  Optimizing age-of-information in a multi-class queueing system , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[11]  Sennur Ulukus,et al.  Age of Information in G/G/1/1 Systems: Age Expressions, Bounds, Special Cases, and Optimization , 2019, IEEE Transactions on Information Theory.

[12]  Ayfer Özgür,et al.  Throughput-delay trade-off for hierarchical cooperation in ad hoc wireless networks , 2008, 2008 International Conference on Telecommunications.

[13]  Harpreet S. Dhillon,et al.  Average Peak Age-of-Information Minimization in UAV-Assisted IoT Networks , 2018, IEEE Transactions on Vehicular Technology.

[14]  Sennur Ulukus,et al.  Optimal Selective Encoding for Timely Updates , 2020, 2020 54th Annual Conference on Information Sciences and Systems (CISS).

[15]  Vangelis Angelakis,et al.  Age of information of multiple sources with queue management , 2015, 2015 IEEE International Conference on Communications (ICC).

[16]  Sennur Ulukus,et al.  Coded status updates in an energy harvesting erasure channel , 2018, 2018 52nd Annual Conference on Information Sciences and Systems (CISS).

[17]  Sennur Ulukus,et al.  Age minimization in energy harvesting communications: Energy-controlled delays , 2017, 2017 51st Asilomar Conference on Signals, Systems, and Computers.

[18]  Roy D. Yates,et al.  Real-time status updating: Multiple sources , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[19]  Sennur Ulukus,et al.  Age of Information Scaling in Large Networks with Hierarchical Cooperation , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[20]  Elif Uysal-Biyikoglu,et al.  Age of information under energy replenishment constraints , 2015, 2015 Information Theory and Applications Workshop (ITA).

[21]  Aditya Mahajan,et al.  Remote Estimation Over a Packet-Drop Channel With Markovian State , 2018, IEEE Transactions on Automatic Control.

[22]  Ness B. Shroff,et al.  Optimizing data freshness, throughput, and delay in multi-server information-update systems , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[23]  Sennur Ulukus,et al.  Age of information in multihop multicast networks , 2018, Journal of Communications and Networks.

[24]  Eytan Modiano,et al.  Capacity and delay tradeoffs for ad hoc mobile networks , 2005, IEEE Trans. Inf. Theory.

[25]  Sennur Ulukus,et al.  Age of Information in Multicast Networks with Multiple Update Streams , 2019, 2019 53rd Asilomar Conference on Signals, Systems, and Computers.

[26]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[27]  Marian Codreanu,et al.  Age of information with packet management , 2014, 2014 IEEE International Symposium on Information Theory.

[28]  Jing Yang,et al.  Age-Minimal Online Policies for Energy Harvesting Sensors with Random Battery Recharges , 2018, 2018 IEEE International Conference on Communications (ICC).

[29]  Roy D. Yates,et al.  Status updates through queues , 2012, 2012 46th Annual Conference on Information Sciences and Systems (CISS).

[30]  Ayfer Özgür,et al.  Throughput-Delay Tradeoff for Hierarchical Cooperation in Ad Hoc Wireless Networks , 2010, IEEE Transactions on Information Theory.

[31]  Rahul Vaze,et al.  Not Just Age but Age and Quality of Information , 2018, IEEE Journal on Selected Areas in Communications.

[32]  Vaneet Aggarwal,et al.  Joint Information Freshness and Completion Time Optimization for Vehicular Networks , 2018, IEEE Transactions on Services Computing.

[33]  Xijun Wang,et al.  Age-optimal trajectory planning for UAV-assisted data collection , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[34]  Roy D. Yates,et al.  Probability and stochastic processes , 1998 .

[35]  Songtao Feng,et al.  Minimizing Age of Information for an Energy Harvesting Source with Updating Failures , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[36]  Deniz Gündüz,et al.  A Reinforcement Learning Approach to Age of Information in Multi-User Networks , 2018, 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).

[37]  Meng Wang,et al.  Real-Time Reconstruction of Counting Process through Queues , 2019, ArXiv.

[38]  Roy D. Yates,et al.  Status updates through multicast networks , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[39]  Jingxian Wu,et al.  Optimal Status Update for Age of Information Minimization With an Energy Harvesting Source , 2017, IEEE Transactions on Green Communications and Networking.

[40]  David Tse,et al.  Mobility increases the capacity of ad hoc wireless networks , 2002, TNET.

[41]  Sennur Ulukus,et al.  Partial Updates: Losing Information for Freshness , 2020, 2020 IEEE International Symposium on Information Theory (ISIT).

[42]  Suresh Subramaniam,et al.  On the Benefits of Waiting in Status Update Systems , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[43]  Sennur Ulukus,et al.  Age of Information in G/G/1/1 Systems: Age Expressions, Bounds, Special Cases, and Optimization , 2021, IEEE Transactions on Information Theory.

[44]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[45]  Yin Sun,et al.  Information Aging Through Queues: A Mutual Information Perspective , 2018, 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[46]  Stratis Ioannidis,et al.  Optimal and scalable distribution of content updates over a mobile social network , 2009, IEEE INFOCOM 2009.

[47]  Eytan Modiano,et al.  Age of Information for Discrete Time Queues , 2019, ArXiv.

[48]  Sennur Ulukus,et al.  Age of Information with Soft Updates , 2018, 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[49]  Sennur Ulukus,et al.  Age of Information in Two-Hop Multicast Networks , 2018, 2018 52nd Asilomar Conference on Signals, Systems, and Computers.

[50]  Yu-Pin Hsu,et al.  Age of Information: Whittle Index for Scheduling Stochastic Arrivals , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[51]  Elif Uysal-Biyikoglu,et al.  Optimal Sampling and Remote Estimation of the Wiener Process over a Channel with Random Delay , 2017, ArXiv.

[52]  Sennur Ulukus,et al.  Age-Minimal Transmission in Energy Harvesting Two-Hop Networks , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[53]  Sennur Ulukus,et al.  Optimal Selective Encoding for Timely Updates with Empty Symbol , 2020, 2020 IEEE International Symposium on Information Theory (ISIT).

[54]  Ayfer Özgür,et al.  Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks , 2006, IEEE Transactions on Information Theory.

[55]  H. Vincent Poor,et al.  Online Timely Status Updates with Erasures for Energy Harvesting Sensors , 2018, 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[56]  Eytan Modiano,et al.  Minimizing the Age of Information in broadcast wireless networks , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[57]  Prathamesh Mayekar,et al.  Optimal Lossless Source Codes for Timely Updates , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[58]  Devavrat Shah,et al.  Optimal throughput-delay scaling in wireless networks - part I: the fluid model , 2006, IEEE Transactions on Information Theory.

[59]  Roy D. Yates,et al.  Timely Lossless Source Coding for Randomly Arriving Symbols , 2018, 2018 IEEE Information Theory Workshop (ITW).

[60]  Roy D. Yates,et al.  Status updates through M/G/1/1 queues with HARQ , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[61]  Harpreet S. Dhillon,et al.  A Reinforcement Learning Framework for Optimizing Age of Information in RF-Powered Communication Systems , 2019, IEEE Transactions on Communications.

[62]  Jing Yang,et al.  Sening Information Through Status Updates , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[63]  Sennur Ulukus,et al.  Age of Information Scaling in Large Networks , 2018, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[64]  Roy D. Yates,et al.  Update or wait: How to keep your data fresh , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[65]  Elif Uysal-Biyikoglu,et al.  Age Minimization of Multiple Flows using Reinforcement Learning , 2019, 2019 International Conference on Computing, Networking and Communications (ICNC).

[66]  Sennur Ulukus,et al.  Age of Information for Updates with Distortion , 2019, 2019 IEEE Information Theory Workshop (ITW).

[67]  Qing He,et al.  Optimizing freshness of information: On minimum age link scheduling in wireless systems , 2016, 2016 14th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt).

[68]  Herbert A. David,et al.  Order Statistics , 2011, International Encyclopedia of Statistical Science.