Semimartingale reflecting Brownian motions in the orthant

[1]  Frank Spitzer The Classification of Random Walk , 1964 .

[2]  J. Harrison The diffusion approximation for tandem queues in heavy traffic , 1978, Advances in Applied Probability.

[3]  J. Harrison,et al.  Reflected Brownian Motion on an Orthant , 1981 .

[4]  Ruth J. Williams Brownian motion in a wedge with oblique reflection at the boundary , 1985 .

[5]  F. Roush Introduction to Stochastic Integration , 1994 .

[6]  Martin I. Reiman,et al.  Open Queueing Networks in Heavy Traffic , 1984, Math. Oper. Res..

[7]  Ruth J. Williams Reflected brownian motion in a wedge: Semimartingale property , 1985 .

[8]  Ruth J. Williams Recurrence Classification and Invariant Measure for Reflected Brownian Motion in a Wedge , 1985 .

[9]  J. Harrison,et al.  The Stationary Distribution of Reflected Brownian Motion in a Planar Region , 1985 .

[10]  Ruth J. Williams,et al.  Conformal mapping solution of Laplace's equation on a polygon with oblique derivative boundary conditions , 1986 .

[11]  R. Bass,et al.  Uniqueness for diffusions with piecewise constant coefficients , 1987 .

[12]  Ruth J. Williams,et al.  Multidimensional Reflected Brownian Motions Having Exponential Stationary Distributions , 1987 .

[13]  Ruth J. Williams Reflected Brownian motion with skew symmetric data in a polyhedral domain , 1987 .

[14]  Ruth J. Williams,et al.  Brownian Models of Open Queueing Networks with Homogeneous Customer Populations , 1987 .

[15]  Explicit semimartingale representation of Brownian motion in a wedge , 1990 .

[16]  Hong Chen,et al.  Discrete Flow Networks: Bottleneck Analysis and Fluid Approximations , 1991, Math. Oper. Res..

[17]  P. R. Kumar,et al.  Distributed scheduling based on due dates and buffer priorities , 1991 .

[18]  A. Bernard,et al.  Regulations dÉterminates et stochastiques dans le premier “orthant” de RN , 1991 .

[19]  P. Dupuis,et al.  On Lipschitz continuity of the solution mapping to the Skorokhod problem , 1991 .

[20]  Ruth J. Williams,et al.  Reflected Brownian motion in a cone with radially homogeneous reflection field , 1991 .

[21]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[22]  J. Harrison,et al.  Reflected Brownian Motion in an Orthant: Numerical Methods for Steady-State Analysis , 1992 .

[23]  A. N. Rybko,et al.  On the ergodicity of stochastic processes describing functioning of open queueing networks , 1992 .

[24]  J. M. Harrison,et al.  Brownian Models of Feedforward Queueing Networks: Quasireversibility and Product Form Solutions , 1992 .

[25]  F. P. Kelly,et al.  Dynamic routing in open queueing networks: Brownian models, cut constraints and resource pooling , 1993, Queueing Syst. Theory Appl..

[26]  Viên Nguyen Processing Networks with Parallel and Sequential Tasks: Heavy Traffic Analysis and Brownian Limits , 1993 .

[27]  J. Michael Harrison,et al.  Brownian models of multiclass queueing networks: Current status and open problems , 1993, Queueing Syst. Theory Appl..

[28]  L. Rogers,et al.  Recurrence and transience of reflecting Brownian motion in the quadrant , 1993, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  R. J. Williams,et al.  Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant , 1993 .

[30]  Yang Wang,et al.  Nonexistence of Brownian models for certain multiclass queueing networks , 1993, Queueing Syst. Theory Appl..

[31]  W. Whitt Large Fluctuations in a Deterministic Multiclass Network of Queues , 1993 .

[32]  V. Malyshev NETWORKS AND DYNAMICAL SYSTEMS , 1993 .

[33]  Ruth J. Williams,et al.  Lyapunov Functions for Semimartingale Reflecting Brownian Motions , 1994 .

[34]  M. Bramson Instability of FIFO Queueing Networks with Quick Service Times , 1994 .

[35]  Thomas I. Seidman,et al.  "First come, first served" can be unstable! , 1994, IEEE Trans. Autom. Control..

[36]  J. Dai On Positive Harris Recurrence of Multiclass Queueing Networks: A Unified Approach Via Fluid Limit Models , 1995 .

[37]  Ruth J. Williams,et al.  Existence and Uniqueness of Semimartingale Reflecting Brownian Motions in Convex Polyhedrons , 1996 .