Giant and high-resolution beam steering using slow-light waveguide amplifier.

We propose a novel beam-steering device based on a slow-light waveguide amplifier. In this paper, we present the idea of this steering technique and show its modeling characteristics. Giant steering of the radiation beam is obtained by tuning the wavelength of input light, which is coupled into the Bragg reflector waveguide. A tunable deflection-angle range can be over 40 degrees. High beam coherency and flat intensity distribution enable us to obtain an ultra-large number of resolution-points over 1,000 for few-millimeter long devices.

[1]  Luc Thévenaz,et al.  Slow and fast light in optical fibres , 2008 .

[2]  Peter Ingo Borel,et al.  Slow Light in Photonic Crystal Waveguides , 2018, Slow Light.

[3]  J C Wyant Rotating diffraction grating laser beam scanner. , 1975, Applied optics.

[4]  Akihiro Matsutani,et al.  Slow-light total-internal-reflection switch with bending angle of 30 deg. , 2011, Optics letters.

[5]  Stefania Residori,et al.  Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes , 2009 .

[6]  Weiwei Hu,et al.  Optical phased-array beam steering controlled by wavelength. , 2005, Applied optics.

[7]  F. Koyama,et al.  Slowing Light in Bragg Reflector Waveguide with Tilt Coupling Scheme , 2007, LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings.

[8]  T Shimada,et al.  Lateral integration of VCSEL with slow light amplifier/modulator , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[9]  Toshihiko Baba,et al.  All Semiconductor Low-Δ Photonic Crystal Waveguide for Semiconductor Optical Amplifier , 2006 .

[10]  C.J. Chang-Hasnain Tunable VCSELs , 2000, 2000 IEEE/LEOS International Conference on Optical MEMS (Cat. No.00EX399).

[11]  Wang Zhiyong Optical-phased-array (OPA) Technology Applied to Laser Radar , 2012 .

[12]  S. L. Danielsen,et al.  All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers , 1997 .

[13]  M. Shirasaki Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. , 1996, Optics letters.

[14]  Robert W. Boyd,et al.  Chapter 6 – “Slow” and “fast” light , 2002 .

[15]  A. Sudbø,et al.  Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides , 1993 .

[16]  Fumio Koyama,et al.  Slow Light Modulator with Bragg Reflector Waveguide , 2007, OFC 2007.

[17]  P. Yeh,et al.  Theory of Bragg fiber , 1978 .

[18]  S Odoulov,et al.  Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling. , 2003, Physical review letters.

[19]  S. Noda,et al.  On-chip beam-steering photonic-crystal lasers , 2010 .

[20]  Daniel J Gauthier,et al.  Enhancing the spectral sensitivity of interferometers using slow-light media. , 2007, Optics letters.

[21]  V. Lal,et al.  Optimization of ultra-long MQW semiconductor optical amplifiers for all-optical 40-Gb/s wavelength conversion , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[22]  F. Abe,et al.  Laser printer scanning system with a parabolic mirror , 1977, IEEE Journal of Quantum Electronics.

[23]  Larry A. Coldren,et al.  Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum‐well ridge‐waveguide lasers , 1994 .

[24]  T. Krauss Why do we need slow light , 2008 .

[25]  Kazuo Fujiura,et al.  Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3 , 2006 .