Quantum Systems Theory Viewed from Kossakowski-Lindblad Lie Semigroups - and Vice Versa

The solutions to the celebrated Kossakowski-Lindblad equation extended by coherent controls yield Markovian quantum maps. More precisely, the set of all its solutions forms a semigroup of completely positive trace-preserving maps taking the specific form of a Lie semigroup. Non-trivial symmetries of these semigroups are shown to preclude accessibility in Markovian dissipative systems. This is the open-system analogue to closed systems, where triviality of (quadratic) symmetries of the Hamiltonian part suffices to decide that the system is fully controllable. The findings are placed into a unifying Lie frame of quantum systems and control theory alongside with illustrating examples.

[1]  Victor V. Albert,et al.  Symmetries and conserved quantities in Lindblad master equations , 2013, 1310.1523.

[2]  R. Brockett System Theory on Group Manifolds and Coset Spaces , 1972 .

[3]  Michael Keyl,et al.  Controlling several atoms in a cavity , 2014, 1401.5722.

[4]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[5]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[6]  Uwe Helmke,et al.  Lie-semigroup structures for reachability and control of open quantum systems: kossakowski-lindblad generators form lie wedge to markovian channels , 2009 .

[7]  R. Zeier,et al.  On squares of representations of compact Lie algebras , 2015, 1504.07732.

[8]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[10]  T. Andô Majorization, doubly stochastic matrices, and comparison of eigenvalues , 1989 .

[11]  D. Tannor,et al.  Uncontrollable quantum systems: A classification scheme based on Lie subalgebras , 2009 .

[12]  R. Feynman Simulating physics with computers , 1999 .

[13]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[14]  R. Zeier,et al.  Symmetry principles in quantum systems theory , 2010, 1012.5256.

[15]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[16]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[17]  S. R. Searle,et al.  The Vec-Permutation Matrix, the Vec Operator and Kronecker Products: A Review , 1981 .

[18]  U. Helmke,et al.  Lie-Semigroup Structures for Reachability and Control of Open Quantum Systems: Viewing Markovian Quantum Channels as Lie Semigroups and GKS-Lindblad Generators as Lie Wedge , 2008 .

[19]  M. Obata On subgroups of the orthogonal group , 1958 .

[20]  Haidong Yuan,et al.  Characterization of Majorization Monotone Quantum Dynamics , 2010, IEEE Transactions on Automatic Control.

[21]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[22]  Michael Keyl,et al.  A dynamic systems approach to fermions and their relation to spins , 2012, 1211.2226.

[23]  Katarzyna Karnas,et al.  Criteria for universality of quantum gates , 2016, 1610.00547.

[24]  Daniel Burgarth,et al.  Symmetry criteria for quantum simulability of effective interactions , 2015, 1504.07734.

[25]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[26]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[27]  Charles H. Bennett,et al.  Optimal Simulation of Two-Qubit Hamiltonians Using General Local Operations , 2001, quant-ph/0107035.

[28]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[29]  Thomas Schulte-Herbrüggen,et al.  Illustrating the Geometry of Coherently Controlled Unital Open Quantum Systems , 2011, IEEE Transactions on Automatic Control.

[30]  Uwe Helmke,et al.  Lie Theory for Quantum Control , 2008 .

[31]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[32]  M. Nielsen,et al.  Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries , 2001, quant-ph/0106064.