Application of finite element method in dental implant research

This article provides a review of the achievements and advancements in dental technology brought about by computer-aided design and the all powerful finite element method (FEM) of analysis. The scope of the review covers dental implants, jawbone surrounding the implant and the biomechanical implant and jawbone interaction. Prevailing assumptions made in the published finite element analysis (FEA) and their limitations are discussed in some detail which helps identify the gaps in research as well as future research direction.

[1]  J. S. Przemieniecki Theory of matrix structural analysis , 1985 .

[2]  A K Patra,et al.  Guidelines for analysis and redesign of dental implants. , 1998, Implant dentistry.

[3]  C. Stanford,et al.  Functional behaviour of bone around dental implants. , 2004, Gerodontology.

[4]  T Nakajima,et al.  Finite element analysis of the stresses around fixtures in various reconstructed mandibular models--part II (effect of horizontal load). , 2003, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[5]  R G Craig,et al.  Stresses and deflections in the floor of model cavity preparations. , 1974, Journal of oral rehabilitation.

[6]  Fumio Takashima,et al.  Biomechanical stress in bone surrounding an implant under simulated chewing. , 2003, Clinical oral implants research.

[7]  F. Bosman,et al.  A three-dimensional, finite-element analysis of bone around dental implants in an edentulous human mandible. , 1993, Archives of oral biology.

[8]  A. Kirsch,et al.  The IMZ osteointegrated implant system. , 1989, Dental clinics of North America.

[9]  T Nakajima,et al.  Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models. , 2002, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[10]  C. Misch,et al.  Rationale for the Application of Immediate Load In Implant Dentistry: Part I , 2004, Implant dentistry.

[11]  T. Albrektsson,et al.  Design and surface characteristics of 13 commercially available oral implant systems. , 1993, The International journal of oral & maxillofacial implants.

[12]  K Soma,et al.  Stress of tooth and PDL structure created by bite force. , 1993, The Bulletin of Tokyo Medical and Dental University.

[13]  O. Miyakawa,et al.  Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. , 1998, The International journal of oral & maxillofacial implants.

[14]  S. Hansson,et al.  The implant neck: smooth or provided with retention elements. A biomechanical approach. , 1999, Clinical oral implants research.

[15]  Ş. Canay,et al.  Comparison of stress distribution around vertical and angled implants with finite-element analysis. , 1996, Quintessence international.

[16]  A L Yettram,et al.  Reactive force distributions for teeth when loaded singly and when used as fixed partial denture abutments. , 1979, The Journal of prosthetic dentistry.

[17]  J. F. Fleming,et al.  Comparison of two-dimensional and three-dimensional finite element analysis of a blade implant. , 1987, The International journal of oral implantology : implantologist.

[18]  L Sennerby,et al.  Influence of variations in implant diameters: a 3- to 5-year retrospective clinical report. , 1999, The International journal of oral & maxillofacial implants.

[19]  Lars Sennerby,et al.  Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. , 2004, Clinical oral implants research.

[20]  Alexei Mossolov,et al.  Tooth-implant connection: some biomechanical aspects based on finite element analyses. , 2002, Clinical oral implants research.

[21]  W R Krause,et al.  FINITE ELEMENT ANALYSIS OF INTERFACE GEOMETRY EFFECTS ON THE CRESTAL BONE SURROUNDING A DENTAL IMPLANT , 1992, Implant dentistry.

[22]  H. Iplikçioğlu,et al.  Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. , 2002, Journal of dentistry.

[23]  Makoto Shiota,et al.  The influence of implant location and length on stress distribution for three-unit implant-supported posterior cantilever fixed partial dentures. , 2004, The Journal of prosthetic dentistry.

[24]  Richter Ej,et al.  In vivo horizontal bending moments on implants. , 1998 .

[25]  R. B. Ashman,et al.  Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. , 1993, Journal of biomechanics.

[26]  I Akpinar,et al.  A natural tooth's stress distribution in occlusion with a dental implant. , 2000, Journal of oral rehabilitation.

[27]  W C Hayes,et al.  Mechanical properties of metaphyseal bone in the proximal femur. , 1991, Journal of biomechanics.

[28]  L Sennerby,et al.  The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. , 1997, Clinical oral implants research.

[29]  E. Richter,et al.  In vivo horizontal bending moments on implants. , 1998, The International journal of oral & maxillofacial implants.

[30]  L. Borchers,et al.  Three-dimensional Stress Distribution Around a Dental Implant at Different Stages of Interface Development , 1983, Journal of dental research.

[31]  E F Rybicki,et al.  Quantification of bone stresses during remodeling. , 1980, Journal of biomechanics.

[32]  T Albrektsson,et al.  Suggested guidelines for the topographic evaluation of implant surfaces. , 2000, The International journal of oral & maxillofacial implants.

[33]  J B Brunski,et al.  Biomechanics of oral implants: future research directions. , 1988, Journal of dental education.

[34]  H. S. Hedia,et al.  Design optimization of functionally graded dental implant. , 2004, Bio-medical materials and engineering.

[35]  R. Pilliar,et al.  Threaded versus porous-surfaced designs for implant stabilization in bone-endodontic implant model. , 1986, Journal of biomedical materials research.

[36]  S. Liu,et al.  Seed-growing segmentation of 3-D surfaces from CT-contour data , 1999, Comput. Aided Des..

[37]  J A Hobkirk,et al.  Mandibular deformation in subjects with osseointegrated implants. , 1991, The International journal of oral & maxillofacial implants.

[38]  W. J. O'brien,et al.  Dental materials : properties and selection , 1989 .

[39]  R. Jaffin,et al.  The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. , 1991, Journal of periodontology.

[40]  S. Cowin,et al.  Bone remodeling I: theory of adaptive elasticity , 1976 .

[41]  George K. Knopf,et al.  Adaptive reconstruction of bone geometry from serial cross-sections , 2001, Artif. Intell. Eng..

[42]  H. J. Rønold,et al.  Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. , 2003, Biomaterials.

[43]  Y. Pao,et al.  Periodontal ligament stresses in the initiation of occlusal traumatism. , 1984, Journal of periodontal research.

[44]  Lars Sennerby,et al.  One-year prospective three-center study comparing the outcome of a "soft bone implant" (prototype Mk IV) and the standard Brånemark implant. , 2003, Clinical implant dentistry and related research.

[45]  M Viceconti,et al.  TRI2SOLID: an application of reverse engineering methods to the creation of CAD models of bone segments. , 1998, Computer methods and programs in biomedicine.

[46]  D Siegele,et al.  Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. , 1989, The International journal of oral & maxillofacial implants.

[47]  H. Iplikçioğlu,et al.  A comparison of three-dimensional finite element stress analysis with in vitro strain gauge measurements on dental implants. , 2002, The International journal of prosthodontics.

[48]  Svatava Konvicková,et al.  Influence of implant length and diameter on stress distribution: a finite element analysis. , 2004, The Journal of prosthetic dentistry.

[49]  J. Galante,et al.  ESB Research Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems. , 1993, Journal of biomechanics.

[50]  C Aparicio,et al.  Use of 5-mm-diameter implants: Periotest values related to a clinical and radiographic evaluation. , 1998, Clinical oral implants research.

[51]  M. Petyt,et al.  Theory of matrix structural analysis: by J. S. Przemieniecki. New York: McGraw-Hill Book Company, 1968 , 1969 .

[52]  Michel Barquins,et al.  Influence of implant length and bicortical anchorage on implant stress distribution. , 2003, Clinical implant dentistry and related research.

[53]  J W Farah,et al.  Stress analysis of mandibular partial dentures with bounded and free-end saddles. , 1980, Journal of dentistry.

[54]  Aslihan Usumez,et al.  The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. , 2004, The Journal of prosthetic dentistry.

[55]  D. Sullivan Prosthetic considerations for the utilization of osseointegrated fixtures in the partially edentulous arch. , 1986, The International journal of oral & maxillofacial implants.

[56]  R G Craig,et al.  Finite element analysis of three- and four-unit bridges. , 1989, Journal of oral rehabilitation.

[57]  G. van der Perre,et al.  Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. , 1998, Journal of oral rehabilitation.

[58]  Ismail Yh,et al.  Comparison of two-dimensional and three-dimensional finite element analysis of a blade implant. , 1987 .

[59]  U. Lekholm,et al.  Oral function in subjects with overdentures supported by osseointegrated implants. , 1988, Scandinavian journal of dental research.

[60]  T Jemt,et al.  A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. , 1996, Clinical oral implants research.

[61]  G Watzek,et al.  [Bone resorption at the entry of osseointegrated implants--a biomechanical phenomenon. Finite element study]. , 1989, Zeitschrift fur Stomatologie.

[62]  D Buser,et al.  Crestal bone changes around titanium implants: a methodologic study comparing linear radiographic with histometric measurements. , 2001, The International journal of oral & maxillofacial implants.

[63]  Hiroshi Fukuda,et al.  Finite element analysis of the influence of implant inclination, loading position, and load direction on stress distribution , 2003, Odontology.

[64]  D T Davy,et al.  Determination of Stress Patterns in Root-filled Teeth Incorporating Various Dowel Designs , 1981, Journal of dental research.

[65]  F. Mante,et al.  Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. , 1998, The Journal of oral implantology.

[66]  R. Skalak,et al.  Similarity of stress distribution in bone for various implant surface roughness heights of similar form. , 2000, Clinical implant dentistry and related research.

[67]  O. C. Zienkiewicz,et al.  Curved, isoparametric, “quadrilateral” elements for finite element analysis , 1968 .

[68]  P. Dechow,et al.  Structural properties of mandibular bone following application of a bone plate. , 1995, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[69]  Haruka Kusakari,et al.  Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. , 2003, The International journal of oral & maxillofacial implants.

[70]  M R Rieger,et al.  Finite element analysis of six endosseous implants. , 1990, The Journal of prosthetic dentistry.

[71]  S C Bayne,et al.  3D-FEA of osseointegration percentages and patterns on implant-bone interfacial stresses. , 1997, Journal of dentistry.

[72]  K Okimoto,et al.  Numeric approach to the biomechanical analysis of thermal effects in coated implants. , 1993, The International journal of prosthodontics.

[73]  R. Huiskes,et al.  Sensitivity Analysis and Optimal Shape Design for Bone-Prosthesis Interfaces in a Femoral Head Surface Replacement , 2000, Computer methods in biomechanics and biomedical engineering.

[74]  J. Gottlow,et al.  Clinical and radiographic evaluation of the 5-mm diameter regular-platform Brånemark fixture: 2- to 5-year follow-up. , 2002, Clinical implant dentistry and related research.

[75]  Sullivan Dy Prosthetic considerations for the utilization of osseointegrated fixtures in the partially edentulous arch. , 1986 .

[76]  S. Robinson,et al.  Stress Distribution in the Single‐Unit Osseointegrated Dental Implant: Finite Element Analyses of Axial and Off‐Axial Loading , 2000, Implant dentistry.

[77]  H. Iplikçioğlu,et al.  Finite element stress analysis of the influence of staggered versus straight placement of dental implants. , 2001, The International journal of oral & maxillofacial implants.

[78]  I Lewinstein,et al.  Finite element analysis of a new system (IL) for supporting an implant-retained cantilever prosthesis. , 1995, The International journal of oral & maxillofacial implants.

[79]  J. Wolff The Law of Bone Remodelling , 1986, Springer Berlin Heidelberg.

[80]  S Nakagiri,et al.  Biomechanical studies on newly tailored artificial dental root. , 1994, Bio-medical materials and engineering.

[81]  Phophi Kamposiora,et al.  Three-dimensional computerized stress analysis of commercially pure titanium and yttrium-partially stabilized zirconia implants. , 2002, The International journal of prosthodontics.

[82]  J. H. Koolstra,et al.  A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. , 1988, Journal of biomechanics.

[83]  Raffaella Aversa,et al.  Mandibular flexure and stress build-up in mandibular full-arch fixed prostheses supported by osseointegrated implants. , 2003, Clinical oral implants research.

[84]  M. Pharoah,et al.  An assessment of crown-to-root ratios with short sintered porous-surfaced implants supporting prostheses in partially edentulous patients. , 2005, The International journal of oral & maxillofacial implants.

[85]  T. Jemt A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants , 1997 .

[86]  Sang‐Wan Shin,et al.  A retrospective study on the treatment outcome of wide-bodied implants. , 2004, The International journal of prosthodontics.

[87]  L Zhang,et al.  [A three-dimensional finite element analysis of the correlation between lengths and diameters of the implants of fixed bridges with proper stress distribution]. , 2000, Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology.

[88]  Michel Barquins,et al.  Two dental implants designed for immediate loading: a finite element analysis. , 2002, The International journal of oral & maxillofacial implants.

[89]  D H DeTolla,et al.  Role of the finite element model in dental implants. , 2000, The Journal of oral implantology.

[90]  Wei Sun,et al.  Recent development on computer aided tissue engineering - a review , 2002, Comput. Methods Programs Biomed..

[91]  Julius Wolff,et al.  Concept of the Law of Bone Remodelling , 1986 .

[92]  G. Liu,et al.  Application of finite element analysis in implant dentistry: a review of the literature. , 2001, The Journal of prosthetic dentistry.

[93]  G. Liu,et al.  Finite element analysis of four thread-form configurations in a stepped screw implant. , 2004, Journal of oral rehabilitation.

[94]  C E Misch,et al.  Implant design considerations for the posterior regions of the mouth. , 1999, Implant dentistry.