A variable-stepsize Jacobian-free exponential integrator for simulating transport in heterogeneous porous media: Application to wood drying

A Jacobian-free variable-stepsize method is developed for the numerical integration of the large, stiff systems of differential equations encountered when simulating transport in heterogeneous porous media. Our method utilises the exponential Rosenbrock-Euler method, which is explicit in nature and requires a matrix-vector product involving the exponential of the Jacobian matrix at each step of the integration process. These products can be approximated using Krylov subspace methods, which permit a large integration stepsize to be utilised without having to precondition the iterations. This means that our method is truly "Jacobian-free" - the Jacobian need never be formed or factored during the simulation. We assess the performance of the new algorithm for simulating the drying of softwood. Numerical experiments conducted for both low and high temperature drying demonstrates that the new approach outperforms (in terms of accuracy and efficiency) existing simulation codes that utilise the backward Euler method via a preconditioned Newton-Krylov strategy.

[1]  Håvard Berland,et al.  NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET , 2005 .

[2]  B. Minchev,et al.  A review of exponential integrators for first order semi-linear problems , 2005 .

[3]  Mayya Tokman,et al.  Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods , 2006, J. Comput. Phys..

[4]  Ian Turner,et al.  A mesoscopic drying model applied to the growth rings of softwood: mesh generation and simulation results , 2008 .

[5]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[6]  Ian W. Turner,et al.  Efficient simulation of unsaturated flow using exponential time integration , 2011, Appl. Math. Comput..

[7]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[8]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[9]  Ian Turner,et al.  A heterogeneous wood drying computational model that accounts for material property variation across growth rings , 2002 .

[10]  Antoine Tambue,et al.  An exponential integrator for advection-dominated reactive transport in heterogeneous porous media , 2010, J. Comput. Phys..

[11]  ANDREAS FROMMER,et al.  Stopping Criteria for Rational Matrix Functions of Hermitian and Symmetric Matrices , 2008, SIAM J. Sci. Comput..

[12]  L. Trefethen,et al.  Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .

[13]  C. Kelley Solving Nonlinear Equations with Newton's Method , 1987 .

[14]  Ian Turner,et al.  A heterogeneous three-dimensional computational model for wood drying , 2005 .

[15]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[16]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[17]  E. Celledoni,et al.  A Krylov projection method for systems of ODEs , 1997 .

[18]  David A. Pope An exponential method of numerical integration of ordinary differential equations , 1963, CACM.

[19]  Oliver G. Ernst,et al.  A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..

[20]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[21]  Valeria Simoncini,et al.  Acceleration Techniques for Approximating the Matrix Exponential Operator , 2008, SIAM J. Matrix Anal. Appl..

[22]  P. Perré Meshpore: A Software Able to Apply Image-Based Meshing Techniques to Anisotropic and Heterogeneous Porous Media , 2005 .

[23]  I. Turner,et al.  Krylov subspace approximations for the exponential Euler method: error estimates and the harmonic Ritz approximant , 2011 .

[24]  I. Turner,et al.  Determination of the Material Property Variations Across the Growth Ring of Softwood for Use in a Heterogeneous Drying Model. Part 2. Use of Homogenisation to Predict Bound Liquid Diffusivity and Thermal Conductivity , 2001 .

[25]  Ya Yan Lu,et al.  Computing a Matrix Function for Exponential Integrators , 2003 .

[26]  A. Ostermann,et al.  Implementation of exponential Rosenbrock-type integrators , 2009 .

[27]  Ian Turner,et al.  The use of implicit flux limiting schemes in the simulation of the drying process: A new maximum flow sensor applied to phase mobilities , 2001 .

[28]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[29]  Michiel E. Hochstenbach,et al.  Subspace extraction for matrix functions , 2005 .

[30]  Jörn Sesterhenn,et al.  Exponential time integration using Krylov subspaces , 2009 .

[31]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .