A variable-stepsize Jacobian-free exponential integrator for simulating transport in heterogeneous porous media: Application to wood drying
暂无分享,去创建一个
E. J. Carr | I. W. Turner | P. Perré | I. Turner | P. Perré | E. Carr
[1] Håvard Berland,et al. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET , 2005 .
[2] B. Minchev,et al. A review of exponential integrators for first order semi-linear problems , 2005 .
[3] Mayya Tokman,et al. Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods , 2006, J. Comput. Phys..
[4] Ian Turner,et al. A mesoscopic drying model applied to the growth rings of softwood: mesh generation and simulation results , 2008 .
[5] Carol S. Woodward,et al. Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..
[6] Ian W. Turner,et al. Efficient simulation of unsaturated flow using exponential time integration , 2011, Appl. Math. Comput..
[7] Marlis Hochbruck,et al. Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..
[8] Roger B. Sidje,et al. Expokit: a software package for computing matrix exponentials , 1998, TOMS.
[9] Ian Turner,et al. A heterogeneous wood drying computational model that accounts for material property variation across growth rings , 2002 .
[10] Antoine Tambue,et al. An exponential integrator for advection-dominated reactive transport in heterogeneous porous media , 2010, J. Comput. Phys..
[11] ANDREAS FROMMER,et al. Stopping Criteria for Rational Matrix Functions of Hermitian and Symmetric Matrices , 2008, SIAM J. Sci. Comput..
[12] L. Trefethen,et al. Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .
[13] C. Kelley. Solving Nonlinear Equations with Newton's Method , 1987 .
[14] Ian Turner,et al. A heterogeneous three-dimensional computational model for wood drying , 2005 .
[15] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[16] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[17] E. Celledoni,et al. A Krylov projection method for systems of ODEs , 1997 .
[18] David A. Pope. An exponential method of numerical integration of ordinary differential equations , 1963, CACM.
[19] Oliver G. Ernst,et al. A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..
[20] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[21] Valeria Simoncini,et al. Acceleration Techniques for Approximating the Matrix Exponential Operator , 2008, SIAM J. Matrix Anal. Appl..
[22] P. Perré. Meshpore: A Software Able to Apply Image-Based Meshing Techniques to Anisotropic and Heterogeneous Porous Media , 2005 .
[23] I. Turner,et al. Krylov subspace approximations for the exponential Euler method: error estimates and the harmonic Ritz approximant , 2011 .
[24] I. Turner,et al. Determination of the Material Property Variations Across the Growth Ring of Softwood for Use in a Heterogeneous Drying Model. Part 2. Use of Homogenisation to Predict Bound Liquid Diffusivity and Thermal Conductivity , 2001 .
[25] Ya Yan Lu,et al. Computing a Matrix Function for Exponential Integrators , 2003 .
[26] A. Ostermann,et al. Implementation of exponential Rosenbrock-type integrators , 2009 .
[27] Ian Turner,et al. The use of implicit flux limiting schemes in the simulation of the drying process: A new maximum flow sensor applied to phase mobilities , 2001 .
[28] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[29] Michiel E. Hochstenbach,et al. Subspace extraction for matrix functions , 2005 .
[30] Jörn Sesterhenn,et al. Exponential time integration using Krylov subspaces , 2009 .
[31] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .