Explain and Predict, and then Predict Again

[1]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[2]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[3]  Rich Caruana,et al.  Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.

[4]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[5]  Sebastian Riedel,et al.  Language Models as Knowledge Bases? , 2019, EMNLP.

[6]  Emily Chen,et al.  How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation , 2018, ArXiv.

[7]  Avishek Anand,et al.  TableNet: An Approach for Determining Fine-grained Relations for Wikipedia Tables , 2019, WWW.

[8]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[9]  Wolfgang Nejdl,et al.  Exploring Web Archives Through Temporal Anchor Texts , 2017, WebSci.

[10]  Benjamin Schrauwen,et al.  Training and Analysing Deep Recurrent Neural Networks , 2013, NIPS.

[11]  Andrew Slavin Ross,et al.  Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations , 2017, IJCAI.

[12]  Fei-Fei Li,et al.  Visualizing and Understanding Recurrent Networks , 2015, ArXiv.

[13]  Percy Liang,et al.  Understanding Black-box Predictions via Influence Functions , 2017, ICML.

[14]  Dan Roth,et al.  Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences , 2018, NAACL.

[15]  Mihaela van der Schaar,et al.  INVASE: Instance-wise Variable Selection using Neural Networks , 2018, ICLR.

[16]  Zijian Zhang,et al.  Dissonance Between Human and Machine Understanding , 2019, Proc. ACM Hum. Comput. Interact..

[17]  Christine D. Piatko,et al.  Using “Annotator Rationales” to Improve Machine Learning for Text Categorization , 2007, NAACL.

[18]  Ting Liu,et al.  Attention-over-Attention Neural Networks for Reading Comprehension , 2016, ACL.

[19]  Ramón Fernández Astudillo,et al.  From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification , 2016, ICML.

[20]  Ivan Titov,et al.  Interpretable Neural Predictions with Differentiable Binary Variables , 2019, ACL.

[21]  Daniel Jurafsky,et al.  Understanding Neural Networks through Representation Erasure , 2016, ArXiv.

[22]  Kathleen McKeown,et al.  Fine-grained Sentiment Analysis with Faithful Attention , 2019, ArXiv.

[23]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[24]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[25]  Ye Zhang,et al.  Rationale-Augmented Convolutional Neural Networks for Text Classification , 2016, EMNLP.

[26]  Regina Barzilay,et al.  Rationalizing Neural Predictions , 2016, EMNLP.

[27]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[28]  Avishek Anand,et al.  Model agnostic interpretability of rankers via intent modelling , 2020, FAT*.

[29]  Regina Barzilay,et al.  Inferring Which Medical Treatments Work from Reports of Clinical Trials , 2019, NAACL.

[30]  Jason Eisner,et al.  Modeling Annotators: A Generative Approach to Learning from Annotator Rationales , 2008, EMNLP.

[31]  Andreas Vlachos,et al.  FEVER: a Large-scale Dataset for Fact Extraction and VERification , 2018, NAACL.

[32]  Ye Zhang,et al.  Do Human Rationales Improve Machine Explanations? , 2019, BlackboxNLP@ACL.

[33]  Wolfgang Nejdl,et al.  The Dawn of today's popular domains: A study of the archived German Web over 18 years , 2016, 2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL).

[34]  Diyi Yang,et al.  Hierarchical Attention Networks for Document Classification , 2016, NAACL.

[35]  Byron C. Wallace,et al.  ERASER: A Benchmark to Evaluate Rationalized NLP Models , 2020, ACL.

[36]  Mirella Lapata,et al.  Long Short-Term Memory-Networks for Machine Reading , 2016, EMNLP.

[37]  Wolfgang Nejdl,et al.  Expedition: A Time-Aware Exploratory Search System Designed for Scholars , 2016, SIGIR.

[38]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[39]  Yuval Pinter,et al.  Attention is not not Explanation , 2019, EMNLP.

[40]  Byron C. Wallace,et al.  Attention is not Explanation , 2019, NAACL.

[41]  Ming Yang,et al.  Entity recognition from clinical texts via recurrent neural network , 2017, BMC Medical Informatics and Decision Making.