Rechargeable ultrahigh-capacity tellurium–aluminum batteries

A novel cell configuration allows a Te nanowire positive electrode for delivering an ultrahigh discharge capacity in tellurium–aluminum batteries.

[1]  L. Wan,et al.  Carbonized‐MOF as a Sulfur Host for Aluminum–Sulfur Batteries with Enhanced Capacity and Cycling Life , 2019, Advanced Functional Materials.

[2]  Zifeng Yan,et al.  Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries , 2018 .

[3]  Bingan Lu,et al.  Carbon Nanoscrolls for Aluminum Battery. , 2018, ACS nano.

[4]  A. Manthiram,et al.  Room-Temperature Aluminum-Sulfur Batteries with a Lithium-Ion-Mediated Ionic Liquid Electrolyte , 2018 .

[5]  Bingan Lu,et al.  A novel aluminum dual-ion battery , 2018 .

[6]  S. Jiao,et al.  Flower-like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum-Ion Batteries. , 2018, ChemSusChem.

[7]  S. Jiao,et al.  Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries , 2018 .

[8]  Qiang Zhang,et al.  Review on High‐Loading and High‐Energy Lithium–Sulfur Batteries , 2017 .

[9]  C. L. Medrano-Pesqueira,et al.  Structural properties of poly-crystals embedded in glassy matrix of the ternary system CdO-TeO 2 -GeO 2 , 2017 .

[10]  Yongchang Liu,et al.  Electrospun NaVPO4F/C Nanofibers as Self‐Standing Cathode Material for Ultralong Cycle Life Na‐Ion Batteries , 2017 .

[11]  M. Islam,et al.  MgFeSiO4 as a potential cathode material for magnesium batteries: ion diffusion rates and voltage trends , 2017 .

[12]  Xiaoyan Zhang,et al.  Nanocomposites of poly(vinylidene fluoride) - Controllable hydroxylated/carboxylated graphene with enhanced dielectric performance for large energy density capacitor , 2017 .

[13]  A. Manthiram,et al.  Electrochemical Energy Storage with a Reversible Nonaqueous Room‐Temperature Aluminum–Sulfur Chemistry , 2017 .

[14]  H. Dai,et al.  Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode , 2017, Nature Communications.

[15]  D. Fang,et al.  High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode. , 2017, ACS nano.

[16]  S. Jiao,et al.  A long-life rechargeable Al ion battery based on molten salts , 2017 .

[17]  S. Jiao,et al.  An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene , 2016 .

[18]  H. Dai,et al.  3D Graphitic Foams Derived from Chloroaluminate Anion Intercalation for Ultrafast Aluminum‐Ion Battery , 2016, Advanced materials.

[19]  Weidong He,et al.  Three-Dimensional Hierarchical Reduced Graphene Oxide/Tellurium Nanowires: A High-Performance Freestanding Cathode for Li-Te Batteries. , 2016, ACS nano.

[20]  Xiulin Fan,et al.  A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte. , 2016, Angewandte Chemie.

[21]  S. Jiao,et al.  A Novel Aluminum‐Ion Battery: Al/AlCl3‐[EMIm]Cl/Ni3S2@Graphene , 2016 .

[22]  Xiaogang Li,et al.  Biomass derivative/graphene aerogels for binder-free supercapacitors , 2016 .

[23]  T. Bredow,et al.  The Electrochemical Synthesis of Polycationic Clusters. , 2016, Angewandte Chemie.

[24]  Qing Wan,et al.  Proton‐Conducting Graphene Oxide‐Coupled Neuron Transistors for Brain‐Inspired Cognitive Systems , 2015, Advanced materials.

[25]  T. Potlog,et al.  Temperature-dependent growth and XPS of Ag-doped ZnTe thin films deposited by close space sublimation method , 2015 .

[26]  S. Jiao,et al.  A new aluminium-ion battery with high voltage, high safety and low cost. , 2015, Chemical communications.

[27]  Shaobin Wang,et al.  Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions. , 2015, Small.

[28]  L. Archer,et al.  A novel non-aqueous aluminum sulfur battery , 2015 .

[29]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[30]  Cheol‐Min Park,et al.  Te/C nanocomposites for Li-Te Secondary Batteries , 2015, Scientific Reports.

[31]  Jun Lu,et al.  Binder-free V2O5 cathode for greener rechargeable aluminum battery. , 2015, ACS applied materials & interfaces.

[32]  Wei Wang,et al.  A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation , 2013, Scientific Reports.

[33]  Yong‐Lai Zhang,et al.  Graphitic carbon quantum dots as a fluorescent sensing platform for highly efficient detection of Fe3+ ions , 2013 .

[34]  E. Ahrens,et al.  A Facile Route for the Synthesis of Polycationic Tellurium Cluster Compounds: Synthesis in Ionic Liquid Media and Characterization by Single-Crystal X-ray Crystallography and Magnetic Susceptibility† , 2010 .

[35]  Hui-Ming Cheng,et al.  Synthesis of high-quality graphene with a pre-determined number of layers , 2009 .

[36]  Bo Liu,et al.  Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation. , 2006, The journal of physical chemistry. B.

[37]  Manhong Liu,et al.  Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid , 2005 .

[38]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[39]  N. Bjerrum,et al.  Chlorocomplexes in molten salts. III. Raman study of a chloro complexes formed in the molten potassium chloride-aluminum chloride-tellurium chloride system , 2002 .

[40]  J. Nagy,et al.  Preparation and Characterization of Carbon Nanotube/Polyacrylonitrile Composites , 2002 .

[41]  I. Sun,et al.  Electrochemistry of tellurium(IV) in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt , 1997 .

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  L. Curtiss,et al.  Molecular Orbital Calculations and Raman Measurements for 1-Ethyl-3-methylimidazolium Chloroaluminates , 1995 .

[44]  R. Marassi,et al.  Electrooxidation of Sulfur in Molten AlCl3 ‐ NaCl ( 63 – 37 Mole Percent ) , 1979 .

[45]  H. Monkhorst,et al.  "Special points for Brillouin-zone integrations"—a reply , 1977 .

[46]  R. L. Watson,et al.  X‐ray photoemission studies of tellurium and some of its compounds , 1977 .

[47]  R. A. Osteryoung,et al.  Electrochemical studies on sulfur and sulfides in aluminum chloride-sodium chloride melts , 1976 .

[48]  N. Bjerrum,et al.  CHLORO COMPLEXES IN MOLTEN SALTS PART 3, RAMAN STUDY OF THE CHLORO COMPLEXES FORMED IN THE MOLTEN KCL-ALCL3-TECL4 SYSTEM , 1975 .

[49]  P. Hagenmuller,et al.  Darstellung und Eigenschaften der Aluminium‐Oxid‐ und ‐Thiohalogenide Erzeugung eines Oxid‐ und eines Thioamids , 1963 .

[50]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[51]  H. Gerding,et al.  Investigation of the structure of the compounds TeCl4 · AlCl3 and SeCl4 · AlCl3 by means of the Raman effect , 1954 .