Convergence rate for a Radau hp collocation method applied to constrained optimal control

For control problems with control constraints, a local convergence rate is established for an hp-method based on collocation at the Radau quadrature points in each mesh interval of the discretization. If the continuous problem has a sufficiently smooth solution and the Hamiltonian satisfies a strong convexity condition, then the discrete problem possesses a local minimizer in a neighborhood of the continuous solution, and as either the number of collocation points or the number of mesh intervals increase, the discrete solution convergences to the continuous solution in the sup-norm. The convergence is exponentially fast with respect to the degree of the polynomials on each mesh interval, while the error is bounded by a polynomial in the mesh spacing. An advantage of the hp-scheme over global polynomials is that there is a convergence guarantee when the mesh is sufficiently small, while the convergence result for global polynomials requires that a norm of the linearized dynamics is sufficiently small. Numerical examples explore the convergence theory.

[1]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[2]  Qi Gong,et al.  Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..

[3]  William W. Hager,et al.  Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction , 2015, J. Frankl. Inst..

[4]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[5]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[6]  I. Babuška,et al.  Theh, p andh-p versions of the finite element method in 1 dimension , 1986 .

[7]  W. Hager,et al.  An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .

[8]  P. Williams Jacobi pseudospectral method for solving optimal control problems , 2004 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  W. Hager Numerical Analysis in Optimal Control , 2001 .

[11]  W. Hager,et al.  Dual Approximations in Optimal Control , 1984 .

[12]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[13]  Victor M. Zavala,et al.  Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..

[14]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[15]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[16]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[17]  William W. Hager,et al.  Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control , 2016, Journal of Optimization Theory and Applications.

[18]  William W. Hager,et al.  Computational Method for Optimal Guidance and Control Using Adaptive Gaussian Quadrature Collocation , 2019, Journal of Guidance, Control, and Dynamics.

[19]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[20]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[21]  W. Kang Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems , 2010 .

[22]  Wei Kang,et al.  The rate of convergence for a pseudospectral optimal control method , 2008, 2008 47th IEEE Conference on Decision and Control.

[23]  William W. Hager,et al.  A pseudospectral method for optimal control based on collocation at the Gauss points , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[24]  Anil V. Rao,et al.  A ph mesh refinement method for optimal control , 2015 .

[25]  W. Hager,et al.  Optimality, stability, and convergence in nonlinear control , 1995 .

[26]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[27]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[28]  W. Hager,et al.  A new approach to Lipschitz continuity in state constrained optimal control 1 1 This research was su , 1998 .

[29]  Péter Vértesi On lagrange interpolation , 1981 .

[30]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[31]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[32]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[33]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[34]  William W. Hager,et al.  The Euler approximation in state constrained optimal control , 2001, Math. Comput..

[35]  W. Hager,et al.  Lipschitzian stability in nonlinear control and optimization , 1993 .

[36]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[37]  J. Elschner,et al.  The $h$-$p$-Version of Spline Approximation Methods for Mellin Convolution Equations , 1993 .

[38]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[39]  Liang Yang,et al.  Bounds for integration matrices that arise in Gauss and Radau collocation , 2019, Comput. Optim. Appl..

[40]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[41]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[42]  Anil V. Rao,et al.  Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .

[43]  W. Hager,et al.  LEBESGUE CONSTANTS ARISING IN A CLASS OF COLLOCATION METHODS , 2015, 1507.08316.

[44]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[45]  J. Frédéric Bonnans,et al.  Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control , 2006, Numerische Mathematik.

[46]  William W. Hager,et al.  Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control , 2015, J. Optim. Theory Appl..

[47]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[48]  W. Hager Multiplier methods for nonlinear optimal control , 1990 .