Convergence rate for a Radau hp collocation method applied to constrained optimal control
暂无分享,去创建一个
William W. Hager | Anil V. Rao | Subhashree Mohapatra | Hongyan Hou | Xiang-Sheng Wang | W. Hager | A. Rao | Hongyan Hou | Subhashree Mohapatra | Xiang-Sheng Wang
[1] Sigal Gottlieb,et al. Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.
[2] Qi Gong,et al. Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..
[3] William W. Hager,et al. Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction , 2015, J. Frankl. Inst..
[4] Yvon Maday,et al. Polynomial interpolation results in Sobolev spaces , 1992 .
[5] Anil V. Rao,et al. GPOPS-II , 2014, ACM Trans. Math. Softw..
[6] I. Babuška,et al. Theh, p andh-p versions of the finite element method in 1 dimension , 1986 .
[7] W. Hager,et al. An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .
[8] P. Williams. Jacobi pseudospectral method for solving optimal control problems , 2004 .
[9] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[10] W. Hager. Numerical Analysis in Optimal Control , 2001 .
[11] W. Hager,et al. Dual Approximations in Optimal Control , 1984 .
[12] William W. Hager,et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..
[13] Victor M. Zavala,et al. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..
[14] William W. Hager,et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..
[15] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[16] Gamal N. Elnagar,et al. Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..
[17] William W. Hager,et al. Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control , 2016, Journal of Optimization Theory and Applications.
[18] William W. Hager,et al. Computational Method for Optimal Guidance and Control Using Adaptive Gaussian Quadrature Collocation , 2019, Journal of Guidance, Control, and Dynamics.
[19] William W. Hager,et al. Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..
[20] I. Michael Ross,et al. Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[21] W. Kang. Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems , 2010 .
[22] Wei Kang,et al. The rate of convergence for a pseudospectral optimal control method , 2008, 2008 47th IEEE Conference on Decision and Control.
[23] William W. Hager,et al. A pseudospectral method for optimal control based on collocation at the Gauss points , 2018, 2018 IEEE Conference on Decision and Control (CDC).
[24] Anil V. Rao,et al. A ph mesh refinement method for optimal control , 2015 .
[25] W. Hager,et al. Optimality, stability, and convergence in nonlinear control , 1995 .
[26] Ivo Babuška,et al. The p - and h-p version of the finite element method, an overview , 1990 .
[27] Ivo Babuška,et al. The h-p version of the finite element method , 1986 .
[28] W. Hager,et al. A new approach to Lipschitz continuity in state constrained optimal control 1 1 This research was su , 1998 .
[29] Péter Vértesi. On lagrange interpolation , 1981 .
[30] Anil V. Rao,et al. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .
[31] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[32] Gamal N. Elnagar,et al. The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..
[33] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[34] William W. Hager,et al. The Euler approximation in state constrained optimal control , 2001, Math. Comput..
[35] W. Hager,et al. Lipschitzian stability in nonlinear control and optimization , 1993 .
[36] William W. Hager,et al. Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.
[37] J. Elschner,et al. The $h$-$p$-Version of Spline Approximation Methods for Mellin Convolution Equations , 1993 .
[38] I. Babuska,et al. The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .
[39] Liang Yang,et al. Bounds for integration matrices that arise in Gauss and Radau collocation , 2019, Comput. Optim. Appl..
[40] I. Michael Ross,et al. Costate Estimation by a Legendre Pseudospectral Method , 1998 .
[41] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[42] Anil V. Rao,et al. Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .
[43] W. Hager,et al. LEBESGUE CONSTANTS ARISING IN A CLASS OF COLLOCATION METHODS , 2015, 1507.08316.
[44] Ivo Babuska,et al. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..
[45] J. Frédéric Bonnans,et al. Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control , 2006, Numerische Mathematik.
[46] William W. Hager,et al. Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control , 2015, J. Optim. Theory Appl..
[47] I. Babuska,et al. The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .
[48] W. Hager. Multiplier methods for nonlinear optimal control , 1990 .