A novel parameter separation based identification algorithm for Hammerstein systems

Abstract This letter focuses on the parameter estimation of block-oriented Hammerstein nonlinear systems. In order to solve the dimension disaster problem and reduce the computational complexity of the over-parametrization based methods, a parameter separation based multi-innovation stochastic gradient identification algorithm is proposed by using the filtering technique and the multi-innovation identification theory. The proposed method can avoid estimating the redundant parameters and can generate highly accurate parameter estimates. A simulation example is provided to demonstrate its effectiveness.

[1]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[2]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[3]  F. Ding,et al.  Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique , 2015 .

[4]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[5]  Feng Ding,et al.  Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition , 2016, Circuits Syst. Signal Process..

[6]  Yan Ji,et al.  Unified Synchronization Criteria for Hybrid Switching-Impulsive Dynamical Networks , 2015, Circuits Syst. Signal Process..

[7]  Ling Xu,et al.  The damping iterative parameter identification method for dynamical systems based on the sine signal measurement , 2016, Signal Process..

[8]  Wei Zhang,et al.  Improved least squares identification algorithm for multivariable Hammerstein systems , 2015, J. Frankl. Inst..

[9]  Xinggao Liu,et al.  Recursive maximum likelihood method for the identification of Hammerstein ARMAX system , 2016 .

[10]  Dongqing Wang,et al.  Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models , 2016, Appl. Math. Lett..

[11]  Feng Ding,et al.  Data Filtering-Based Multi-innovation Stochastic Gradient Algorithm for Nonlinear Output Error Autoregressive Systems , 2016, Circuits Syst. Signal Process..

[12]  Z. Lang A nonparametric polynomial identification algorithm for the Hammerstein system , 1997, IEEE Trans. Autom. Control..

[13]  M. Haeri,et al.  Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models , 2015 .

[14]  Ling Xu,et al.  Application of the Newton iteration algorithm to the parameter estimation for dynamical systems , 2015, J. Comput. Appl. Math..

[15]  Feng Ding,et al.  A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems , 2015, Digit. Signal Process..

[16]  Er-Wei Bai,et al.  Making parametric Hammerstein system identification a linear problem , 2011, Autom..

[17]  Cheng Wang,et al.  Parameter identification of a class of nonlinear systems based on the multi-innovation identification theory , 2015, J. Frankl. Inst..

[18]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[19]  Hengyong Tu,et al.  Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model , 2008 .

[20]  Feng Ding,et al.  Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model , 2015, Digit. Signal Process..

[21]  Junhong Li,et al.  Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration , 2013, Appl. Math. Lett..

[22]  Baolin Liu,et al.  A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems , 2014, Appl. Math. Comput..

[23]  Guoli Li,et al.  Nonlinear modeling and predictive functional control of Hammerstein system with application to the turntable servo system , 2016 .

[24]  Feng Ding,et al.  An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering , 2016, J. Frankl. Inst..

[25]  Yongsong Xiao,et al.  Parameter estimation for nonlinear dynamical adjustment models , 2011, Math. Comput. Model..