Global minimization of rational functions and the nearest GCDs

This paper discusses the global minimization of rational functions with or without constraints. We propose sum of squares relaxations to solve these problems, and study their properties. Some special features are discussed. First, we consider minimization of rational functions without constraints. Second, as an application, we show how to find the nearest common divisors of polynomials via unconstrained minimization of rational functions. Third, we discuss minimizing rational functions under some constraints which are described by polynomials.

[1]  B. Reznick Some concrete aspects of Hilbert's 17th Problem , 2000 .

[2]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[3]  Narendra Karmarkar,et al.  Approximate polynomial greatest common divisors and nearest singular polynomials , 1996, ISSAC '96.

[4]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[5]  Etienne de Klerk,et al.  Global optimization of rational functions: a semidefinite programming approach , 2006, Math. Program..

[6]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[7]  A. Fialkow,et al.  THE TRUNCATED COMPLEX K-MOMENT PROBLEM , 2000 .

[8]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[9]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[10]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[11]  Scott McCallum,et al.  A Polynomial-Time Algorithm for the Topological Type of a Real Algebraic Curve , 1984, J. Symb. Comput..

[12]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[13]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[14]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[15]  S. Verblunsky,et al.  On Positive Polynomials , 1945 .

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Markus Schweighofer,et al.  On the complexity of Putinar's Positivstellensatz , 2005, 0812.2657.

[18]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[19]  R. Curto,et al.  The truncated complex -moment problem , 2000 .

[20]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[21]  Jiawang Nie,et al.  Shape Optimization of Transfer Functions , 2006 .

[22]  Claus Scheiderer,et al.  Distinguished representations of non-negative polynomials , 2005 .

[23]  Pablo A. Parrilo,et al.  Exploiting structure in sum of squares programs , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[24]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[25]  James Demmel,et al.  Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..

[26]  Masakazu Kojima,et al.  Sparsity in sums of squares of polynomials , 2005, Math. Program..

[27]  Monique Laurent,et al.  Semidefinite representations for finite varieties , 2007, Math. Program..

[28]  Narendra Karmarkar,et al.  On Approximate GCDs of Univariate Polynomials , 1998, J. Symb. Comput..

[29]  G. Stengle Complexity Estimates for the Schmudgen Positivstellensatz , 1996 .

[30]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[31]  Pablo A. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[32]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[33]  Dinesh Manocha,et al.  Algorithms for intersecting parametric and algebraic curves I: simple intersections , 1994, TOGS.

[34]  Monique Laurent,et al.  Semidefinite Approximations for Global Unconstrained Polynomial Optimization , 2005, SIAM J. Optim..

[35]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..