Silicon nanophotonics for scalable quantum coherent feedback networks

The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism.

[1]  J. Bowers,et al.  Resonant Si/Ge avalanche photodiode with an ultrahigh gain bandwidth product , 2010, 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM).

[2]  S. Massar,et al.  On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. , 2011, Optics letters.

[3]  M. Lipson,et al.  Tailored anomalous group-velocity dispersion in silicon channel waveguides. , 2006, Optics express.

[4]  Roberto Morandotti,et al.  CMOS-compatible, multiplexed source of heralded photon pairs: towards integrated quantum combs , 2014 .

[5]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[6]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[7]  Dmitri S. Pavlichin,et al.  Specification of photonic circuits using quantum hardware description language , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[9]  Gerald S. Buller,et al.  Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm , 2013, IEEE Transactions on Electron Devices.

[10]  Y. Désières,et al.  Optical anisotropy and light extraction efficiency of MBE grown GaN nanowires epilayers. , 2011, Optics express.

[11]  G. Lo,et al.  Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition. , 2011, Optics express.

[12]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[13]  Hideo Mabuchi,et al.  Squeezed light in an optical parametric oscillator network with coherent feedback quantum control. , 2013, Optics express.

[14]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[15]  Hideo Mabuchi,et al.  Cavity-QED models of switches for attojoule-scale nanophotonic logic , 2009, 0907.2720.

[16]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[17]  Edoardo Charbon,et al.  A Ge-on-Si single-photon avalanche diode operating in Geiger mode at infrared wavelengths , 2012, Defense, Security, and Sensing.

[18]  Keith G Petrillo,et al.  Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides. , 2012, Optics express.

[19]  Charles Santori,et al.  Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators. , 2013, Optics express.

[20]  C. W. Gardiner Input and output in damped quantum systems III: formulation of damped systems driven by Fermion fields , 2004 .

[21]  Continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[22]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[23]  J. E. Gough,et al.  Enhancement of field squeezing using coherent feedback , 2009, 0906.1933.

[24]  Roberto Morandotti,et al.  Integrated frequency comb source of heralded single photons. , 2014, Optics express.

[25]  J. Sipe,et al.  Spontaneous parametric downconversion in waveguides: what's loss got to do with it? , 2014, 1407.4219.

[26]  Hideo Mabuchi,et al.  Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.

[27]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[28]  Yang Yue,et al.  Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. , 2012, Optics express.

[29]  G J Milburn,et al.  Mesoscopic one-way channels for quantum state transfer via the quantum Hall effect. , 2004, Physical review letters.

[30]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[31]  Dmitri S. Pavlichin,et al.  Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. , 2009, Physical review letters.

[32]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[33]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[34]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[35]  Knight,et al.  Two-photon absorption and nonclassical states of light. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[36]  G. Lo,et al.  Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. , 2008, Optics express.

[37]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[38]  Ryan Hamerly,et al.  Coherent controllers for optical-feedback cooling of quantum oscillators , 2012, 1206.2688.

[39]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[40]  Michal Lipson,et al.  On-Chip Optical Squeezing , 2013, 1309.6371.

[41]  Michal Lipson,et al.  Harmonic generation in silicon nitride ring resonators. , 2010, Optics express.

[42]  D. G. Rabus,et al.  Integrated Ring Resonators , 2020, Springer Series in Optical Sciences.

[43]  Zach DeVito,et al.  Opt , 2017 .

[44]  Ryan Hamerly,et al.  Quantum noise in large-scale coherent nonlinear photonic circuits , 2014 .

[45]  J. Bowers,et al.  Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .

[46]  Andrea Alù,et al.  Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials , 2013, Nature Communications.

[47]  G. Agrawal Fiber-Optic Communication Systems: Agrawal/Fiber-Optic , 2010 .

[48]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[49]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.

[50]  Yurii A. Vlasov,et al.  Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides , 2010, 1001.1533.

[51]  Tymon Barwicz,et al.  Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer. , 2012, Optics express.

[52]  Dmitri S. Pavlichin,et al.  Design of nanophotonic circuits for autonomous subsystem quantum error correction , 2011, 1102.3143.

[53]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[54]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[55]  Matthew R. James,et al.  Quantum feedback networks and control: A brief survey , 2012, 1201.6020.

[56]  Ryan Hamerly,et al.  Quantum noise of free-carrier dispersion in semiconductor optical cavities , 2015, 1504.04409.

[57]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[58]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[59]  P Jeppesen,et al.  Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides. , 2011, Optics express.

[60]  Dong Hun Kim,et al.  On-chip optical isolation in monolithically integrated non-reciprocal optical resonators , 2011 .

[61]  Yang Yue,et al.  Flat and low dispersion in highly nonlinear slot waveguides. , 2010, Optics express.

[62]  Michael G. Wood,et al.  Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides , 2014 .

[63]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[64]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[65]  Hao Hu,et al.  Ultra-high-speed wavelength conversion in a silicon photonic chip. , 2011, Optics express.

[66]  Zongfu Yu,et al.  What is — and what is not — an optical isolator , 2013, Nature Photonics.

[67]  C J Oton,et al.  High nonlinear figure-of-merit amorphous silicon waveguides. , 2013, Optics express.

[68]  D. Trotter,et al.  High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes. , 2016, Optics express.

[69]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[70]  T. M. Stace,et al.  Approximate method for treating dispersion in one-way quantum channels (5 pages) , 2006 .

[71]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[72]  David A. B. Miller,et al.  A micromachining-based technology for enhancing germanium light emission via tensile strain , 2012, Nature Photonics.

[73]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[74]  Peter D. Drummond,et al.  The Quantum Theory of Nonlinear Optics , 2014 .

[75]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[76]  Milburn,et al.  All-optical versus electro-optical quantum-limited feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[77]  Oskar Painter,et al.  Surface encapsulation for low-loss silicon photonics , 2007, 0707.0415.

[78]  M. Watts,et al.  Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. , 2011, Optics express.

[79]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[80]  Michal Lipson,et al.  Tunable squeezing using coupled ring resonators on a silicon nitride chip , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[81]  Michal Lipson,et al.  Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency , 2006 .

[82]  W Freude,et al.  Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition. , 2011, Optics express.

[83]  From classical four-wave mixing to parametric fluorescence in silicon microring resonators. , 2012, Optics letters.